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Abstract

For reliable event reconstruction of Imaging Atmospheric Cherenkov Telescopes (IACTs), calibration of the optical
throughput efficiency is required. Within current facilities, this is achieved through the use of ring shaped images
generated by muons. Here, a complementary approach is explored, achieving cross calibration of elements of IACT
arrays through pairwise comparisons between telescopes, focussing on its applicability to the upcoming Cherenkov
Telescope Array (CTA). Intercalibration of telescopes of a particular type using eventwise comparisons of shower image
amplitudes has previously been demonstrated to recover the relative telescope optical responses. A method utilising the
reconstructed energy as an alternative to image amplitude is presented, enabling cross calibration between telescopes of
varying types within an IACT array. Monte Carlo studies for two plausible CTA layouts have shown that this calibration
procedure recovers the relative telescope response efficiencies at the few percent level.
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Reminder: Intercalibration Principle

- Principle of pairwise comparisons between telescopes

- Number of pairs grows with N telescopes as ~NA2
- Many pairwise comparisons enable calibration of the entire array
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Reminder: Intercalibration

- Comparison via an asymmetry parameter in
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reconstructed energy (rather than image size) 1y = ]
as a probe of optical efficiency Li 7+ Lj
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- A chi-sgquare minimisation for each
telescope sub type was performed to
recover the individual telescope coefficients.

- Different telescope subsystems were
normalised

- Good agreement between recovered
efficiencies and input values

- Results after MC <=> 13 hours on a source
with 10% Crab flux:

Array Component  2A 2B

LSTs 0.2% 0.5%
MSTs 0.9% 0.7%
SST's 1.2% 2.8%

Full array 1.7% 2.5%

Recovered Efficiency

Efficiency % Residual
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Reminder: Intercalibration

True Efficiency



Cross Calibration on hadronic backaround

Protons TR 4 R=
: st g F
% - OSST 3 T
good correlation in § v g oo
asymmetries T 08—
low statistics; - J sl
~0(103%) survive S 4 osE-
CUtS -0.3:; E
: — o
large scatter for a3
smallest telescopes
Expected Asyrﬁmetry o
Resullts gfter MC <=> Array Component | on -
23s livetime s 5
LSTs 1.3% 2.7%
MSTs 11.3% 12.8%
SSTs 25.0% 30.2%
Full Array 213% | 27.9%




Dealing with biased energy reconstruction

* Deliberately biased g_ >
energy 2t E
reconstruction with z §
core distance = I
« Bias factor (200/d) r
applied 02
e subsystem scaling O _
factors difficult
(not applied)
Expected Asymmetry S o o7 o 0.IgTrue Effic1liency
Array Component 2A 2B
LSTs 0.9% 1.6%
MSTs 3.9% 5.7%
SSTs 5.0% 0.4%
6 Full Array 47% | 7.3%




Reminder: Intercalibration Principle

- Principle of pairwise comparisons between telescopes

- Number of pairs grows with N telescopes as ~NA2
- Many pairwise comparisons enable calibration of the entire array
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- Obtained from data (no extra equipment)
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- Intrinsically uses the correct Cherenkov
light spectrum

Telescope Y Position (m)
N
3

- Potentially available nightwise

- Good precision demonstrated
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- Suggestion from M. Punch: Extend this to calibration of central trigger times



Mean Time Delay (ns)

Same type comparisons
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Difference in central trigger time,
Averaged per telescope separation
Calibrate to within 10ns, 2ns with cuts (meets requirements)

y- MC only
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Same type comparisons

Equidistance cut reduces rms
(cuts on image size and shape - no significant effect)
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LST - MST

Systematic offset
of ~3ns

Reduced by core
distance cut
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MST - SST
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SC-SSTs

Systematic offset
~30Nns

core distance cut
did not remove
many events
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Potential & Further work

Systematic offset between types is not unexpected

Contributing factors include: read out rates, electronics optics, shower
front & telescope geometry - lead to different definitions of t=0

Location of telescope within array - repeat test with difftuse gammas?
Difference is between telescope trigger signal delays.

Where to account for this? At central trigger? Or through calibration?
Complementary to but not competitive with White Rabbit schemes
Investigate source of & understand offset

May also wish to compare absolute time stamp



Thank you for your attention

Any Questions?
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