The Atmosphere in the MC Simulations

What MC expects from the calibration group

Steve Porter (2012)

Gernot Maier

HELMHOLTZ **ASSOCIATION**

Alliance for Astroparticle Physics

from science requirements document:

10% systematic uncertainty on energy scale (SCI-170)

100% of feasible operational time available for observations (SCI-120)

from performance requirements document:

A-PERF-0260The systematic uncertainty of the energy of a photon candidate (at energies above
50 GeV) must be <15 %.

 R, motivated by: SCI-080Applicable States: Observing

A-PERF-0380The uncertainty on the collection area of the system well above threshold (a factor of
two above the lowest energy at which sensitivity is required, e.g. above 40 GeV for
dark sky conditions) must be <12 %.

A-PERF-0390The goal uncertainty on the collection area of the system well above threshold (defined
in A-PERF-0380) is 8 %.
G, motivated by: SCI-170Applicable States: Observing

MC Requirements document

cherenkov telescope array	СТА	Ref: DATA-PIPE-MC/20130602			
		Version : 2.2			
	MC Simulation Software Requirements	Date: Oct 17, 2014			
		Page : 1/34			

MC Simulation Software Requirements

Authors	Laboratory	Approved by	Laboratory
Gernot Maier DESY			
Rolf Bühler DESY			
Johann Cohen-Tanugi LUPM			
Nukri Komin LAPP			
Nepomuk Otte GATEC	H		

Get it from the CTA redmine: <u>https://forge.in2p3.fr/dmsf/files/515/download</u>

4

The atmosphere in air shower simulations

1. density profile

- determines shower development

2. refraction index profile

- determines Cherenkov light production and the image shapes

3. extinction profile (absorption+scattering)

- determines light losses

none of the pre-defined models in the shower simulations (CORSIKA) will fit the CTA site; atmospheric parameters usually too variable for a single set of profiles

Atmospheric profiles (1)

- > atmospheric profiles in MC tabulated from 0 to 120 km
 - radiosonde flight give typically data up to 30 km
 - > extension beyond 35 km with models, e.g. standard models or NRLMSISE-00 Atmosphere Model

Atmospheric profiles (2)

- > extreme case on the left...
- VERITAS: typically 10-25% difference between Summer / Winter
 - > 10% maximum systematic uncertainty in energy determination from multi-year average profiles

Variability

Density, winter months

Index of refraction

- refraction index profile determined as a function of air density, humidity and temperature
 - (from tables, e.g. in MODTRAN)
- wavelength dependence of index of refraction usually ignored
 - (would produce a huge computational overhead in the simulations)

Extinction

- probability that a photon emitted at height Y reach a telescope at height X
 - absorption bands of several molecules, molecular Rayleigh scattering, Mie scattering and absorption
 - note: scattering is treated as extinction (might need to reevaluate this approach, Bernlöhr (2000) shows that scattered light is only important >400 m)
- radiative transfer code used to calculated extinction values
 - most (all?) current observatories use MODTRAN
 - tabulated values used in CORSIKA
- variability mainly in the boundary layer
 - other layers mainly impacted by external events (e.g. volcanic or desert dust)

Extinction

50 km visibility 23 km visibility no aerosols 50 km visibility + 3.5 m/s wind

50 km visibility 23 km visibility Desert + 3.5 m/s wind Desert + 9.0 m/s wind

# Atmospheric Model 21 (V.Winter.US76.50km) ATMOSPHERIC EXTINCTION COEFF. FOR CERENKOV PHOTONS, 180-700nm, in STEPS of						STEPS of km					
#Col. #1	#2 #3 #4	180									
# Alt [km]	rho [a/cm^3] thick [a/cm^2] n-1	0.000	7.807	14.751	20.937	26.459	31.392	35.804	39.754	43.289	46.454
0.000	1.22946e-03 1.03601e+03 2.89600e-04	49.290	51.830	54.059	55.983	57.075	59.159	60.502	69 751	70 205	03.800 70.595
1.000	1.09819e-03 9.23565e+02 2.58700e-04	70,922	71,199	71.435	71.635	71.801	71.942	72.059	72.161	72.250	72.325
2.000	9.90486e-04 8.15019e+02 2.33300e-04	72.388	72.443	72.493	72.540	72.583	72.621	72.658	72.691	72.721	72.749
3.000	9.01675e-04 7.24870e+02 2.12300e-04	72.774									
4.000	8,13350e-04 6,39993e+02 1,91500e-04	185	7 007		00.007	00 450	04.000	05 00 4	00 75 4	40.000	10.151
5,000	7.33228e-04 5.63249e+02 1.72600e-04	0.000	7.807	14.751	20.937	26.459	50 160	35.804	39.754	43.289	45.454
6,000	659409e-04 4 93099e+02 1 55200e-04	64,748	65,639	66.476	67,262	67,976	68,626	69.226	69.751	70.205	70.595
7 000	5.84731e-04 4 22949e+02 1 37600e-04	70.922	71.199	71.435	71.635	71.801	71.942	72.059	72.161	72.250	72.325
8 000	5.38087e-04 3.80495e+02 1.26600e-04	72.388	72.443	72.493	72.540	72.583	72.621	72.658	72.691	72.721	72.749
9,000	4 66832e-04 3 17068e+02 1 09800e-04	72.774									
10.000	4.14007e-04 2.73163e+02 9.74000e-05	0.000	7,807	14,751	20,937	26,459	31,392	35,804	39,754	43,289	46.454
11.000	3.75949e-04 2.43084e+02 8.84400e-05	49.290	51.830	54.059	55.983	57.675	59.169	60.502	61.703	62.798	63.806
12,000	3.20134e-04 2.03329e+02 7.53200e-05	64.748	65.639	66.476	67.262	67.976	68.626	69.226	69.751	70.205	70.595
13.000	2.74951e-04 1.73340e+02 6.47100e-05	70.922	71.199	71.435	71.635	71.801	71.942	72.059	72.161	72.250	72.325
14.000	2.39680e-04 1.50329e+02 5.63900e-05	72.388	72.443	72.493	72.540	/2.583	/2.021	/2.058	/2.091	12.121	/2./49
15.000	2.02398e-04 1.25223e+02 4.76100e-05	195									
16.000	1.71011e-04 1.04398e+02 4.02400e-05	0.000	7.807	14.751	20.937	26.459	31.392	35.804	39.754	43.289	46.454
17.000	1.51184e-04 9.15399e+01 3.55700e-05	49.290	51.830	54.059	55.983	57.675	59.169	60.502	61.703	62.798	63.806
18.000	1.24763e-04 7.55793e+01 2.93500e-05	54.748	05.039 71 100	71 435	71 635	71 801	71 942	72 059	59.751 72 161	70.205	70.595
19.000	1.09011e-04 6.61328e+01 2.56500e-05	72.388	72.443	72.493	72.540	72.583	72.621	72.658	72.691	72.721	72.749
20.000	8.99098e-05 5.49409e+01 2.11500e-05	72.774									
21.000	7.63433e-05 4.69647e+01 1.79600e-05	200									
22.000	6.49534e-05 4.02441e+01 1.52800e-05	0.000	7.807	14.751	20.937	26.459	31.392	35.804	39.754	43.289	46.454
23.000	5.46119e-05 3.41093e+01 1.28500e-05	64,748	65,639	66.476	67,262	67,976	68,626	69.226	69.751	70,205	70.595
24.000	4.67937e-05 2.94049e+01 1.10100e-05	70.922	71.199	71.435	71.635	71.801	71.942	72.059	72.161	72.250	72.325
25.000	3.91221e-05 2.47681e+01 9.20700e-06	72.388	72.443	72.493	72.540	72.583	72.621	72.658	72.691	72.721	72.749
30.000	1.63692e-05 1.07440e+01 3.85200e-06	72.774									
35.000	7.60943e-06 5.13684e+00 1.79100e-06	205	6 770	12 796	18 142	22 020	27 199	31 005	34 421	37 470	40 217
40.000	3.61591e-06 2.58683e+00 8.52100e-07	42.670	44.867	46.797	48.469	49.951	51.273	52.467	53.557	54.564	55.509

Note: need sufficient small step size, as CORSIKA does a linear interpolation only

Gernot Maier Monte Carlo and Atmospheres | Oct 2015

> full phase space (brute force) approach

- produce full MC sets for complete phase space (zenith, azimuth, night-sky background, array layout, atmos. profile,...)
- needs to be repeated each time atmospheric/detector parameters change significantly
- grows multiplicative with additional parameters

> full phase space (brute force) approach

- produce full MC sets for complete phase space (zenith, azimuth, night-sky background, array layout, atmos. profile,...)
- needs to be repeated each time atmospheric/detector parameters change significantly
- grows multiplicative with additional parameters

run-wise simulations

- simulate (sub-)array of telescopes that are tracking a sky position for a given observation run
- see Stefan Ohm's talk at the Liverpool meetine " consider broken pixels, atmosphere model for that observation, calibration, NSB, etc. (no need for Data Correct
- grows linear with number of runs
- by definition closer to reality (assuming good configuration) parameters); difficult to fulfil 100% operational requirement otherwise

 10^{-2}

10⁻¹

10

energy E_{_} [TeV]

> full phase space (brute force) approach

- produce full MC sets for complete phase space (zenith, azimuth, night-sky background, array layout, atmos. profile,...)
- needs to be repeated each time atmospheric/detector parameters change significantly
- grows multiplicative with additional parameters

run-wise simulations

- simulate (sub-)array of telescopes that are tracking a sky position for a given observation run
- see Stefan Ohm's talk at the Liverpool meetine " consider broken pixels, atmosphere model for that observation, calibration, NSB, etc. (no need for Data Correct
- grows linear with number of runs
- by definition closer to reality (assuming good configuration) parameters); difficult to fulfil 100% operational requirement otherwise

intermediate approach

- populate phase space on request only
- tough part is to understand when to expand the parameters

Generation of Instrument Response Functions €^{0.2}

> full phase space (brute force) approach

- produce full MC sets for complete phase space (zenith, azimuth
 - MC needs average atmospheric parameters for a given period. ni
- ne
 - Challenge: understand when conditions changed significantly ch
- enough to start a new production (feedback loop Calib MC) ■ gr
- run-wise simulations
 - simulate (sub-)array of telescopes that are tracking a sky position for a given observation run
- see Steran Ohm's talk at the Liverpool meetine a consider broken pixels, atmosphere model for that observation, calibration, NSB, etc. (no need for Data Correct
 - grows linear with number of runs
 - by definition closer to reality (assuming good configuration) parameters); difficult to fulfil 100% operational requirement otherwise

intermediate approach

- populate phase space on request only
- tough part is to understand when to expand the parameters

Resolution

0.2

Angular I

CTA South

CTA North

Angular P\$F

10² hergy E_B (TeV)

Interface Calibration - Monte Carlo

- MC would like to get from calibration group for a given period the best estimates for the atmospheric parameters
 - a period could be a single run, a month, a season
 - expect all parameters describing the atmosphere in a format digestible for MC
 - means that calibration group is running all steps, including the radiative transfer (extinction values from e.g. MODTRAN)
- this is the fundamental point we need to agree everything else are technicalities

What could be next steps?

> characterisation of sites important to estimate impact on Monte Carlo

- how variable is the atmosphere? Are there stable seasons?
- any input at this point would be valuable
- > define (automatic?) procedures of how to propagate calibration measurements into MC
- > radiative transfer codes anybody working with them?

MODTRAN5 (<u>http://modtran5.com/;</u> >1200\$)

any other in use?

development of MC pipeline will provide a hopefully easy to use feedback loop to test the impact of atmospheric parameters on the shower development

