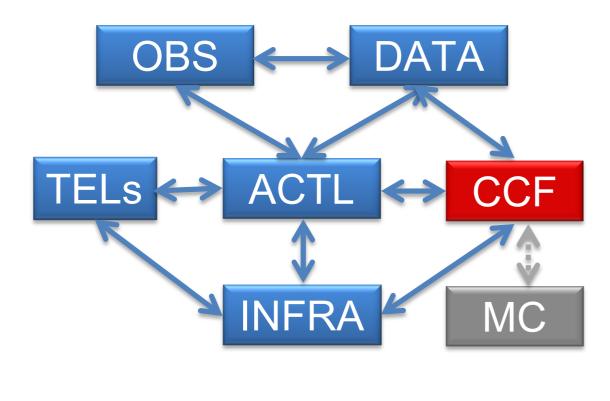
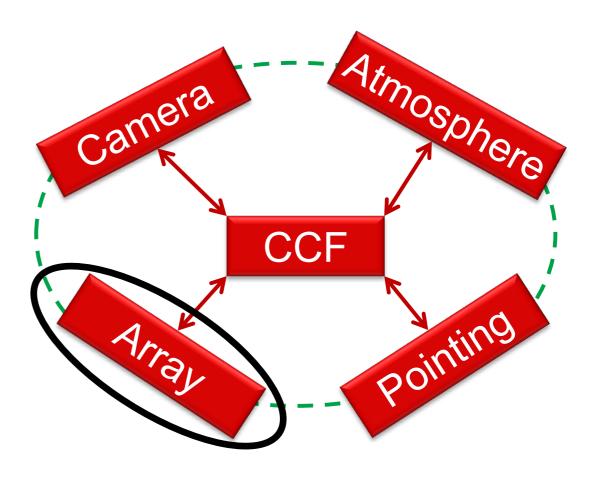



#### Array Calibration: An Introduction

**R.D. Parsons** for the CCF-array team





## Array Calibration

Array calibration group tasked with development of strategy for the array as a whole, including all telescope types and high level data

Requirements for calibration accuracy are much stronger than current instruments

Need to adapt calibration methods used in current instruments to CTA and develop entirely new techniques to meet these requirements





#### Where is array level calibration applied?

Most array calibration methods concentrate on calibrating the absolute light throughput of individual telescopes

Could be achieved both by using regular data products or specialised equipment

Produce a correction factor for each individual telescope which can be applied either to the telescope energy estimate of image amplitude

Array calibration should also check the total performance of the array IRFs at the highest level

Effective area, energy reconstruction, PSF etc...

This could either be as a correction factor, or that the MC simulations being produced represent the array performance correctly

Lets have a look at some methods...

## **Calibration Techniques**

| Method                                          | Co-ordinator                          | Summary                                                                                                    | Status                                                                                 |
|-------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Calibration using<br>muon rings                 | Cettina<br>Maccarone &<br>Markus Gaug | Muons provide<br>standard light source<br>in camera, MC<br>expectation of muons<br>compared to data        | Proven on current<br>instruments, currently<br>being tested on MC of<br>CTA telescopes |
| Inter calibration<br>using cosmic ray<br>events | Alison Mitchell/<br>Dan Parsons       | Compare light yield of<br>gamma-like cosmic<br>ray events, should be<br>equal at the same core<br>distance | Tests made with<br>current generation<br>telescopes, paper<br>complete of CTA tests    |
| Calibration using satellite data                | Dan Parsons                           | Compare<br>reconstructed spectra<br>of "standard candle"<br>sources to satellite<br>data                   | Test studies<br>underway                                                               |

# Calibration Techniques

| Method                                   | <b>Co-ordinator</b>             | Summary                                                                                                          | Status                                                                |
|------------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Cherenkov<br>Transparency<br>Coefficient | Raquel de los<br>Reyes          | Transparency<br>coefficient should be<br>the same for all<br>telescopes. Can be<br>used for inter<br>calibration | CTC proven on HESS<br>data. Calibration tests<br>on CTA data underway |
| Octocopter                               | Anthony Brown &<br>Felix Werner | Fly calibrated light<br>source above the<br>array, calibrate<br>throughput of several<br>telescopes at once      | Proven on Auger FD,<br>tests underway for<br>CTA                      |
| Illuminator                              | Alberto Segreto                 | Calibrated light source<br>to attach to individual<br>telescopes, calibrate<br>total throughput                  | Not tested on any<br>current instruments.<br>CTA tests underway       |

#### Future

We will see in the following talks we have many promising calibration strategies under development

Some are proven by current instruments and just need adaptation, others are more novel and require a little more development

We need to tie these together into a coherent analysis strategy Choose a single primary method and use others as checks Or, try to combine them somehow

Array calibration should produce a telescope wise calibration coefficient and potentially array-wise values also

Level at which these values are applied needs to be determined: In the case of run wise simulations, apply directly to simulations Otherwise apply to IRFs

Interfaces with the DATA work package are crucially important to decide this