

Approaches on Long-term Lightcurves of Blazars for Theoretical Modeling Comparison

Cyrus Walther 2025-11-04

TU Dortmund University | SFB 1491

Acknowledgement of Country

I would like to acknowledge the Traditional Owners of the land on which we are meeting.

I pay my respects to their Elders, past and present, and the Aboriginal Elders of other communities.

Credit: MPP

Credit: MPP

 The Major Atmospheric Gamma Imaging Cherenkov Telescopes are a telescope system of two high-energy gamma-ray IACTs

Credit: MPP

- The Major Atmospheric Gamma Imaging Cherenkov Telescopes are a telescope system of two high-energy gamma-ray IACTs
- MAGIC is sensitive in the energy range between 25 GeV and 30 TeV

Credit: MPP

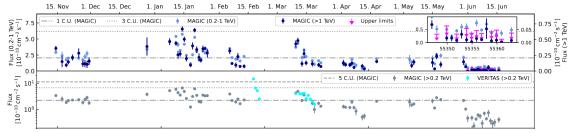
- The Major Atmospheric Gamma Imaging Cherenkov Telescopes are a telescope system of two high-energy gamma-ray IACTs
- MAGIC is sensitive in the energy range between 25 GeV and 30 TeV
- MAGIC telescopes take data since 2009 in stereo observations

Credit: MPP

- The Major Atmospheric Gamma Imaging Cherenkov Telescopes are a telescope system of two high-energy gamma-ray IACTs
- MAGIC is sensitive in the energy range between 25 GeV and 30 TeV
- MAGIC telescopes take data since 2009 in stereo observations
- Together with the VERITAS and HESS telescopes they serve as sister experiment

■ Modeling of gamma-ray emissions of blazars is a core step of short-term IACT blazar analyses

- Modeling of gamma-ray emissions of blazars is a core step of short-term IACT blazar analyses
- Analyzed objects like AGNs show also time sensitivity on longer time scales


- Modeling of gamma-ray emissions of blazars is a core step of short-term IACT blazar analyses
- Analyzed objects like AGNs show also time sensitivity on longer time scales
 - ⇒ Long-term analyses become a consequential goal of high-energy gamma ray astronomy

- Modeling of gamma-ray emissions of blazars is a core step of short-term IACT blazar analyses
- Analyzed objects like AGNs show also time sensitivity on longer time scales
 - \Rightarrow Long-term analyses become a consequential goal of high-energy gamma ray astronomy

Credit: 10 1051/0004-6361/202451624

- Modeling of gamma-ray emissions of blazars is a core step of short-term IACT blazar analyses
- Analyzed objects like AGNs show also time sensitivity on longer time scales
 - ⇒ Long-term analyses become a consequential goal of high-energy gamma ray astronomy

Challenges?:

- Modeling of gamma-ray emissions of blazars is a core step of short-term IACT blazar analyses
- Analyzed objects like AGNs show also time sensitivity on longer time scales
 - ⇒ Long-term analyses become a consequential goal of high-energy gamma ray astronomy

Challenges?:

■ Long-term analyses with IACTs are time-consuming due to a high number of substeps

- Modeling of gamma-ray emissions of blazars is a core step of short-term IACT blazar analyses
- Analyzed objects like AGNs show also time sensitivity on longer time scales
 - ⇒ Long-term analyses become a consequential goal of high-energy gamma ray astronomy

Challenges?:

- Long-term analyses with IACTs are time-consuming due to a high number of substeps
- Such analyses are prone to human error because of the high number of substeps

- Modeling of gamma-ray emissions of blazars is a core step of short-term IACT blazar analyses
- Analyzed objects like AGNs show also time sensitivity on longer time scales
 - ⇒ Long-term analyses become a consequential goal of high-energy gamma ray astronomy

Challenges?:

- Long-term analyses with IACTs are time-consuming due to a high number of substeps
- Such analyses are prone to human error because of the high number of substeps
- Detailed documentation is required to ensure reproducibility of studies

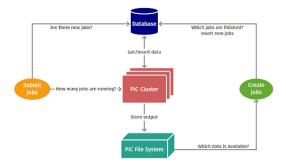
 Less multi-processing of identical configurations due to consistent analysis parameter combinations

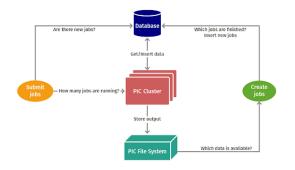
- Less multi-processing of identical configurations due to consistent analysis parameter combinations
- Structured pipeline for handling the submission of analysis files

- Less multi-processing of identical configurations due to consistent analysis parameter combinations
- Structured pipeline for handling the submission of analysis files
- Time-effective data processing for long-term analyses

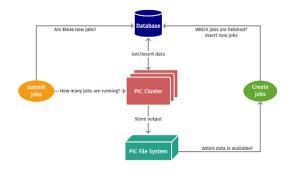
- Less multi-processing of identical configurations due to consistent analysis parameter combinations
- Structured pipeline for handling the submission of analysis files
- Time-effective data processing for long-term analyses
- Reduces human error due to partial automation of parameter choice

- Less multi-processing of identical configurations due to consistent analysis parameter combinations
- Structured pipeline for handling the submission of analysis files
- Time-effective data processing for long-term analyses
- Reduces human error due to partial automation of parameter choice
- Reproducibility through consistent configuration files requiring minimal saving capacities
 - → FAIR Values

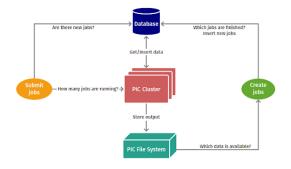




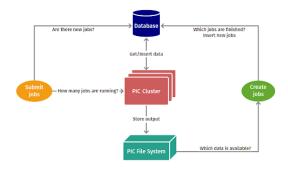
Credit: Jan Lukas Schubert


 Query to the database to ensure uniqueness of analysis configurations for minimizing requested computing capacities

Credit: Jan Lukas Schubert

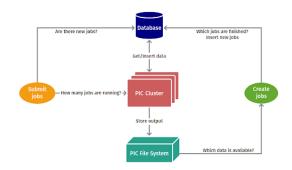

- Query to the database to ensure uniqueness of analysis configurations for minimizing requested computing capacities
- Centralized submission of individual analysis steps to the computing cluster

Credit: Jan Lukas Schubert


- Query to the database to ensure uniqueness of analysis configurations for minimizing requested computing capacities
- Centralized submission of individual analysis steps to the computing cluster
- Query for the status of analysis steps to allow analysis steps only to be performed when input resources have been computed successfully

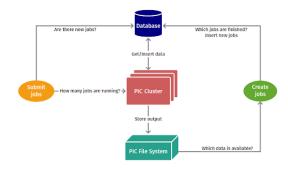
Credit: Jan Lukas Schubert

Credit: Jan Lukas Schubert


- Query to the database to ensure uniqueness of analysis configurations for minimizing requested computing capacities
- Centralized submission of individual analysis steps to the computing cluster
- Query for the status of analysis steps to allow analysis steps only to be performed when input resources have been computed successfully
- Saving of the status of each analysis step allowing for easier error identification

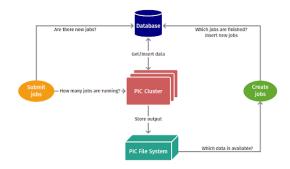
autoMAGIC - Science Capacities:

 Long-term analysis of time-dependent or flaring sources


Credit: Jan Lukas Schubert

autoMAGIC - Science Capacities:

- Long-term analysis of time-dependent or flaring sources
- Development of legacy data for the MAGIC telescopes

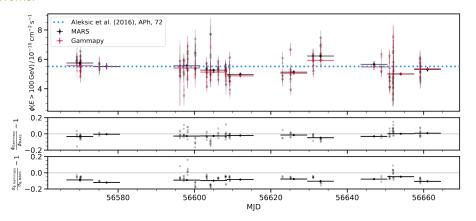

Credit: Jan Lukas Schubert

autoMAGIC - Science Capacities:

 Long-term analysis of time-dependent or flaring sources

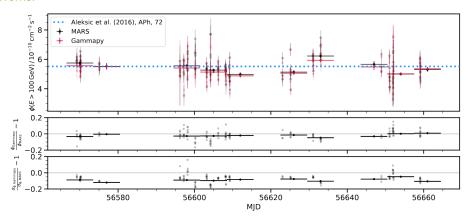
- Development of legacy data for the MAGIC telescopes
- Cross-check to existing analyses confirming developed results

Credit: Jan Lukas Schubert



Science Works:

Science Works:


Credit: 10.1016/j.jheap.2024.09.011

Science Works:

Credit: 10.1016/j.jheap.2024.09.011

- Reliability test have been performed, comparing with internal software pipelines
- Next step: Individual specialized autoMAGIC analysis use cases

■ Being developed for theoretical modeling of transport and interactions of cosmic rays

- Being developed for theoretical modeling of transport and interactions of cosmic rays
- Transport of ultra-high-energy cosmic rays accross intergalatic space

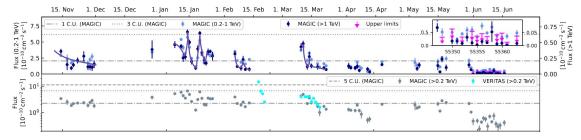
- Being developed for theoretical modeling of transport and interactions of cosmic rays
- Transport of ultra-high-energy cosmic rays accross intergalatic space
- Since CRPropa 2.0, prediction of gamma-ray fluxes produced in photohadronic interactions is included

- Being developed for theoretical modeling of transport and interactions of cosmic rays
- Transport of ultra-high-energy cosmic rays accross intergalatic space
- Since CRPropa 2.0, prediction of gamma-ray fluxes produced in photohadronic interactions is included
- Since CRPropa 3.0, time-dependence is included to account for variable sources

Credit: 10.1088/1475-7516/2022/09/035

■ AGNs are interesting sources for long-term analysis, but the analysis is work-intensive

- AGNs are interesting sources for long-term analysis, but the analysis is work-intensive
- Development of autoMAGIC allows for faster consistent long-term analysis


- AGNs are interesting sources for long-term analysis, but the analysis is work-intensive
- Development of autoMAGIC allows for faster consistent long-term analysis
- The temporal theoretical modeling of gamma-ray fluxes can be performed with CRPropa 3.0

- AGNs are interesting sources for long-term analysis, but the analysis is work-intensive
- Development of autoMAGIC allows for faster consistent long-term analysis
- The temporal theoretical modeling of gamma-ray fluxes can be performed with CRPropa 3.0
- Next step: Close collaboration between CRPropa & autoMAGIC to develop long-term lightcurve modeling

Credit: 10.1051/0004-6361/202451624