Event reconstruction at the LST1 telescope using image-based Deep Learning models CTAO School 2025

Cristian Pozo González (cpozo@iaa.es) Pablo Guzman Sanchez (pguzman@iaa.es) Ruben López-Coto (rlopezcoto@iaa.es) CTLearn Group

CIAO LST COLLABORATION

Cherenkov Imaging Problem to solve Gamma-ray

Cherenkov Imaging Problem to solve

Gamma-ray

GAMMA RAY

VS

Hadron

Peak Time

Cherenkov Imaging Problem to solve

GAMMA RAY

Gamma-ray

Cherenkov Imaging LST pipeline "Istchain"

DL -> Data Level

Cherenkov Imaging LST pipeline "Istchain"

Amplitud vs Time Hillas parameters per pixel

DL -> Data Level

Product for Science

Cherenkov Imaging LST pipeline (CTLearn) OUR WORK !!!

DL -> Data Level

Cherenkov Imaging Deep Learning Model

Cherenkov Imaging Deep Learning Model

How a deep learning model works?

Cherenkov Imaging Deep Learning Model

How a deep learning model works?

Do you remember the Alex talk? Go to slide 6

Sensitivity of the Telescope

EXCELENCIA SEVERO OCHOA

¹Observations of the Crab Nebula and Pulsar with the Large-sized Telescope Prototype of the Cherenkov Telescope Array. (2023). APJ, 956(2), 80. doi:10.3847/1538-4357/ace89d

The improvement in the lower energies in more than <u>40%</u>

GREEEN: CTLEARN <u>(Our Work)</u> PINK: LST CURRENT SENSITIVITY¹

Event reconstruction at the LST1 telescope using image-based Deep Learning models CTAO School 2025

CUESIONS?

2 2 INSTITUTO DE ASTROFÍSICA DE ANDALUCÍA

Crab Nebula Dataset

- 87 Crab Runs
- Obs time ~ 25 h
- Training Nodes: zd=[10,20]

MC performance Energy & Angular Resolution

CILABORATION

Pablo Guzman Work !!

CIACOLLABORATION Sensitivity using Crab Nebula real data Two different ways to calculate

5...D.

With the same Background of RF

Divide both datasets in half.

- 2. Compute the cuts in gammaness and theta² on the first half of the RF dataset.
- Repeat the same process for the 3. second half of the RF dataset and determine which set of cuts gives the best sensitivity.
- Apply the same procedure to the Ctlearn-PyTorch dataset, but adjust the gammaness cut to achieve the same background level per solid angle.

With different Background levels

Divide both datasets in half.

2. Compute the sensitivity for both datasets separately.

Sensitivity using Crab Nebula real data Theta2 - Background level optimized using RF dataset.

Cut applied to the CTlearn-Pytorch dataset give the same background level per solid angle. 17

LST COLLABORATION Sensitivity using Crab Nebula real data Theta2 - Different Background level.

Sensitivity using Crab Nebula real data

The model shows <u>improved performance</u> at low energies < 500 GeV.

The improvement in the lower energies is more than 20%

The difference between the performance paper and the RF curves is because we only analyze <u>25 h.</u>

GREEEN: CTLEARN - PYTORCH BLUE: RF PINK: P. PAPER

Spectral Analysis

The CTLEARN-Pytorch <u>reproduce</u> the Crab Nebula spectrum

This is a good <u>cross check of our</u> <u>model</u>

Pulsar Analysis Phaseogram E < 1 TeV

LST COLLABORATION

Bridge Sig(Li&Ma): 5.29

P1 + P2 Sig(Li&Ma): 8.63

P1 Sig(Li&Ma): 5.7

P2 Sig(Li&Mat: 7.1

Bridge Sig(Li&Ma): 2.79

P1 + P2 Sig(Li&Ma): 8.6

This method improve the significance in P2 and in the **Bridge**

2.00

Pulsar Analysis Phaseogram E < 0.3 TeV

P2 Sig(Li&Ma): 6.73

Bridge Sig(Li&Ma): 2.9

P1 + P2 Sig(Li&Ma): 8.25

This method improve the significance in P2 and in the Bridge

2.00

Pulsar Analysis Significance Evolution vs Time E < 0.1 TeV

RED: CTLEARN GREEEN: RF

CILABORATION

Comparison of methods Not same bg [0 - 0.1 TeV]

Future Work Models and Versions

evolutions and improvements in the future

STEP	V4	V 5	V 6
Model	Same	Same	New model in Dev
Training	Already Trained	Training in Process	Not Started
Data Reduction	Reduction in Process	TBD	TBD

V3 -> Was trained with a MC simulated at a reduced set of locations in the sky.

V4 -> Will be trained with an all-sky MC simulation of the Crab Nebula

V5 -> Training with **REAL DATA**.

V6 -> Improve the arquitecture.

CIAO LST COLLABORATION

The results shown in this presentation were obtained with V3 of our model, we have already foreseen

Conclusions

- The model shows improved performance at low energies.
- It is promising, is giving good results even when trained on a single node.
- Further comparison is needed with multi-node training setups (V4, which is on the way).
- **Future Work**
- Optimize and normalize the training dataset (V4, which is on the way).
- Optimize the network architecture.

LST COLLABORATION

MC performance Classification

Project **CTLEARN-Pytorch**

We use the CTLEARN pipeline, but we implement all the models using PyTorch.

We use a **Double Backbone** model.

One network per task — three tasks, three networks.

Two EfficientNet-based models for regression: Energy and Direction.

ThinResNet architecture used for the classification task.

Training augmentations: flipping, rotation, DVR mask ... etc

