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• This lecture will give an overview of the data processing from DL0 to DL3

• DL0: First level of data written to disk and long-term preserved in CTAO,
mostly pixel-wise time series for each telescope

• DL3: Lowest data level given out to the users of the observatory on a regular basis,
reconstructed event lists of gamma-ray candidates and a mathematical description of the 
measurement process (IRF)

• Many steps already happen before DL0 to process the raw camera signals to a common data 
format for all telescopes, some examples of this lower-level processing are also presented

• This lecture will explain concepts, designs, algorithms etc. It’s not a hands-on tutorial in any 
particular software

• All example data you see here are CTAO simulations or LST observed data processed with ctapipe
https://gitlab.cta-observatory.org/mlinhoff/ctao-school-2025

Scope of this Lecture

5

The task is to “invert” everything that happened
to the gamma rays in the atmosphere and our detectors.

https://gitlab.cta-observatory.org/mlinhoff/ctao-school-2025


6

Introduction

Pixel  2
Pixel 3  

 

R0

Pixel  2
Pixel 3  

 

R 

Calibration

Pixel 3  

 

DL0

Data  olume
Reduction

DL a

 Photons Time / ns

 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 

 Photons Time / ns

 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 

Image Cleaning

                                                 
                 
                
                 
                
                
                
                

DL b

                                
            

                            
                           
                           

DL2

Data Levels up to DL2



From Raw Data to Images
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• PMT or SiPM signals are readout at high frequencies: 
LST:   GSample/s =   measurement per nanosecond

• A local trigger looks for “interesting” data

• Telescope triggers are sent to the array trigger, which decides if data should be stored or not

• In case of a trigger, the cameras digitize the pixel data in a window around the trigger time.

• Some cameras apply two different amplification gains to the analog signal to increase dynamic range 
(e. g. LST & NectarCam)

What does the Raw Data look like?

8
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• The cameras are delivering pixel data in ADC counts

• Camera servers perform a first low-level calibration to amplitudes in photoelectrons

• Cameras are calibrated using different kinds of calibration events

• During observations, sky pedestal and flatfield events are taken at regular intervals, “interleaved” with 
the physics trigger events

Raw Data Calibration
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Dark Pedestal Randomly triggered event without H  switched on, closed shutter

Single-PE Randomly triggered event with H  switched on, closed shutter

Sky Pedestal Randomly triggered event with H  switched on, open shutter

Flatfield Calibration-box laser in the dish illuminates the camera with a light pulse



• The LST Camera uses DRS  chips to digitize the pixel data

• This chip adds several “artifacts” to the data, which need to be corrected

• Needs several tables of calibration coefficients

• Computed from dark pedestal events

• Are updated regularly and immediately after hardware changes

LST DRS4 Calibrations
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doi:10.1016/j.nima.2025.170229

https://doi.org/10.1016/j.nima.2025.170229


• A DRS  chip as 8 channels of  02  capacitor cells

• LST cascades   channels to have a larger time buffer 
->   pixel/gain combination uses  096 cells

• A window of  0 samples is read out around the trigger time

• Position of the window on the buffer is recorded as first_cell_id

LST DRS4 Calibrations
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Five different effects need to be calibrated:

• Cells affected by strong noise

• The first three and the last sample in the readout window show increased electronic noise
• No efficient way to correct ⇒ just discard these samples

• Baseline Correction

• each cell as an individual value for “no signal”
• 2 ·  855 ·  096 calibration coefficients

• Spike Subtraction

• For certain predictable samples, the amplitude is increased for 3 consecutive cells.
• Mean height of these spikes needs to be subtracted. 2 ·  855 · 3 coefficients.

LST DRS4 Calibrations
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Five different effects need to be calibrated:

• DT-Correction

• The amplitude of the cell also depends on the time 
since it was last read out

• Same formula can be used for the same kind of 
DRS  chip:

𝑓 Δ𝑡 = ൞𝑎 ⋅
Δ𝑡

𝑡0

𝑏

− 𝑎, Δ𝑡 < 𝑡0

0, Δ𝑡 ≥ 𝑡0

• Time Correction

• The readout time of each cell is not perfectly 
uniform -> time shift

• This time shift is not corrected at the waveform 
level but later in the analysis

LST DRS4 Calibrations
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LST DRS4 Calibrations
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Calibration to Photoelectrons

 8

doi:10.22323/1.395.0720

• Computed from flatfield and pedestal events

• Method for PMT cameras like LST & NectarCam:

𝑁𝑝.𝑒. =
ഥ𝑄 − ത𝑃

2

𝜎𝑄
2 − 𝜎𝑃

2 ⋅ 𝐹2 ⇒ 𝐶 =
𝑁𝑝.𝑒.
ത𝑄 − ത𝑃

• Calibration factors also need be corrected for an additional noise term 
dependent on signal strength

• Needs flat field events with different amplitudes -> Filter Wheel Scans
• Then simply applied as

𝑆𝑖 = 𝑅𝑖 − 𝑃𝑖 ⋅ 𝐶𝑖

• Relative time shifts between pixels are also computed from flatfield 
events

“Camera Calibration of the CTA-LST Prototype” doi: 0.22323/ .395.0720 

https://doi.org/10.22323/1.395.0720


Gammas
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• Second large data reduction, reduce waveform to just two values for each pixel:

• Number of photoelectrons
• Average arrival time (peak time)

• Several algorithms available in ctapipe

• Most work by finding a peak, integrating around it and computing a weighted average for the peak 
time

• To minimize effect of noise, peak finding can combine waveforms of neighboring pixels or the 
whole camera

2 

Image Extraction

A circular logo with white text

AI-generated content may be incorrect.

https://ctapipe.readthedocs.io/en/latest/api-reference/image/extractor.html


Image Extraction
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Image Extraction
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• Most pixels in any given event only contain noise
⇒ Identify pixels likely containing Cherenkov light

• Many different algorithms

• Can use intensity, peak time and noise level 
estimated from pedestal events

• Simple Example: tailcuts clean:

 . Identify pixels above first threshold

2. Remove pixels with less than 2 neighbors

3. Add neighboring pixels above a second, lower threshold

Image Cleaning

2 

A circular logo with white text

AI-generated content may be incorrect.

https://ctapipe.readthedocs.io/en/latest/api-reference/image/cleaning.html


Image Parametrization
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• Next step of the data reduction

• From two values per pixel to tens 
of parameters per telescope 
event

• Goal: keep as much information 
from images in high-level 
parameters

• Will be used in reconstruction of
energy, direction and primary 
particle type

• Initial set of parameters proposed 
by Hillas in  985

• Extended over time

Image Parameters

26

A. M. Hillas, “Cerenkov Light Images of EAS Produced By 

Primary Gamma Rays and By Nuclei”,

19th International Cosmic Ray Conference, 1985



Side note: camera coordinate frames
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• The computation lined out by Hillas is equivalent to 
a well-known statistical method:
Principal Component Analysis

 . Compute weighted mean vector
⇒ center of gravity

2. Compute covariance matrix
3. Diagonalize covariance matrix by solving 

eigenvalue problem:
• Eigenvalues give length and width;
• Eigenvectors give orientation of major 

axis (psi)
• The total number of photoelectrons is called

size or intensity

• Additionally, also compute higher level moments 
skewness and kurtosis along the shower axis

• Uncertainties can also be computed

Hillas Parameters Today

28



• After computing the Hillas Parameters, we can 
perform a fit of the peak times along the shower 
axis

• Slope is highly correlated with impact distance

• Sign of the slope is very useful for monoscopic
direction reconstruction

• Good agreement with linear fit only for 
electromagnetic cascades, hadrons much more 
erratic

Timing Parameters

29



• For gamma-ray showers, we expect only a single blob of light

• Hadronic cascades have higher probability of sub-showers and 
muon rings

• Compute the number of “islands”, groups of connected pixels after 
cleaning

• Algorithm: breadth-first search of neighboring pixels

• Number of pixels after cleaning, number of all, small, and large 
islands

• Concentration features: ratios of intensity

• inside of the Hillas ellipse

• the brightest pixel

• the three pixels closest to the cog

to the total intensity

Morphology & Concentration

30



• Ratios of photoelectrons or pixels after cleaning in 
the outer edge of the camera

• To describe how well an event is contained in the 
telescope’s Fo 

• Mainly important for energy estimation
and discarding non-contained events

Leakage

3 



• We also collect descriptive statistics of pixel values, 
intensity and peak times:

• Min
• Max
• Mean
• Std
• Skewness
• Kurtosis

Descriptive Statistics

32
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• This is a higher-level analysis step “from the old 
days, before machine learning”

• Still helpful to gain insights into parametrization

• Idea: scale image parameter by the mean of this 
image parameter for gamma rays (depending on 
image intensity, impact distance, zenith angle)

• Can also be averaged over telescopes 
⇒ one number per subarray event

•  alues around   are “gamma like”

•  alues aways from   are “hadron like”

• Well suited for manual cut analysis or machine 
learning models that cannot deal with many 
features

• Less useful in e. g. tree-based learners

Mean Scaled Parameters

37



Reconstruction
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doi:10.1016/S0927-6505(99)00084-5

• Primary energy

• Direction on the sky

• Particle type

Additionally, these quantities might be useful to reconstruct:

• “Impact” point on the ground

• Atmospheric depth of the shower maximum 𝑋max
Together with the direction, these are also referred to as “shower geometry”

Hofmann, W., Jung, I., Konopelko, A., Krawczynski, H., Lampeitl, H., & Pühlhofer, G. ( 999). Comparison of techniques to 
reconstruct VHE gamma-ray showers from multiple stereoscopic Cherenkov images. Astroparticle Physics, 12(3),  35-  3.
doi: 0. 0 6/S0927-6505(99)0008 -5

Three main tasks for each air shower event:

Reconstruction Tasks

39

https://doi.org/10.1016/S0927-6505(99)00084-5


• Only method we’ll discuss today that does not 
need simulated training data

• Purely geometrical

• Reconstructs 3D shower axis:

• Direction in horizontal coordinates: 
altitude, azimuth

• Impact point on the ground: x, y

• Least squares intersections of planes 
spanned by each telescope

• Requires at least 2 telescopes

Hillas Reconstructor

 0

A circular logo with white text

AI-generated content may be incorrect.

https://ctapipe.readthedocs.io/en/latest/api/ctapipe.reco.HillasReconstructor.html


• There is no way to “calibrate” IACT energy reconstruction purely by measurements:

• No tens of Ge  to hundreds of Te  photon test beams
• Atmosphere part of the detector

⇒ Energy reconstruction is always based on simulated “training” data

• Classical approach is training a machine learning model per telescope type and averaging the 
predictions over the telescope events

• Tree based ensemble methods have proven robust and performant

• Random Forests
• Boosted Decision Trees

Energy Reconstruction

  



Excursion:
Basics of Machine 

Learning

42



What is Machine Learning?

 3

• We usually employ supervised machine learning, where a model is trained on a labelled dataset 
and can then be applied to new data 

• We will use 𝑋 and 𝑌 to denote the generic random variables 

• A particular sample of these random variables will be 𝑥𝑖 or 𝑦𝑖
• We can stack several samples in rows and combine multiple variables as columns of a matrix 𝑿,

e.g. if you measure 𝑝 = 2 observables (height and weight) of 𝑁 = 200 people, you get a matrix 𝑿
of shape (200, 2)

• A more formal definition of supervised machine learning:

“Given an 𝑁 × 𝑝 Matrix 𝑿 ∈ ℝ𝑵×𝒑 and some associated output vector 𝒀 ∈ ℝ𝑁,
find a function 𝑓 𝑋 = ෠𝑌, that takes a vector 𝒙 ∈ ℝ𝑝 and returns a prediction ෠𝑌, 
where some ‘loss function’ 𝐿 𝑌, 𝑓 𝑋 is minimized for all 𝑋”

Based on: “The Elements of Statistical Learning”, Hastie, Tibshirani and Friedman (2009). Free PDF 
online.



Regression vs. Classification

  

• We distinguish two main cases:

• Predicting a discrete output 𝑌 ∈ {𝑔1, 𝑔2… , 𝑔𝑘}, called classification with the special case of 
𝑘 = 2 called binary classification

• Predicting a continuous output 𝑌 ∈ ℝ, called regression

• For our tasks, in general, 

• Energy reconstruction is  -dimensional regression
• Particle type is a classification, most often just a binary classification for signal vs. 

background
• Geometry reconstruction is at minimum a two-dimensional regression,

more variables  might be desirable ( 𝑋max, Impact point).

• Many different algorithms are available for both types of machine learning; 
some algorithm can do either



Decision Trees
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• Algorithm: 

• Split the data space recursively by splitting in one feature at a time:
𝑅1 𝑗, 𝑠 = 𝑋 𝑋𝑗 ≤ 𝑠

𝑅2 𝑗, 𝑠 = 𝑋 𝑋𝑗 > 𝑠

• One split is called a node
• Repeat until no more splits can be made, either because the leaf is pure or a maximum 

depth has been reached
• For classification: predict the most common value in a leaf, for regression: predict the mean

• Training:

• Finding the globally optimal splits is computationally infeasible (N-P-hard)
• Instead, we recursively split, making the best split possible according to loss function for the 

current node (greedy approach) and never question again splits we already made
• In each node, we need to find the best split among all possible splits in all possible attributes
• Typical loss functions are based on entropy (classification) 

or mean squared error (regression)



Decision Trees
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concentration_cog  = 0.053
gini = 0.5

samples =  892  
value =  387 03, 387 35 

concentration_cog  = 0.033
gini = 0.336

samples = 72557
value =  2   9, 89989 

True

hillas_width  = 0.  6
gini = 0. 95

samples =   668 
value =  36298 , 297  6 

False

intensity_max  = 2 .85
gini = 0.26

samples =  5556
value =    0 5, 6079  

HillasReconstructor_average_intensity  =  0  .6 
gini = 0. 3 

samples = 2700 
value =   337 , 29 95 

(...) (...) (...) (...)

HillasReconstructor_h_max  = 8626.99 
gini = 0. 86

samples = 38235 
value =  35273 , 253086 

intensity_std  = 63. 9 
gini = 0.306

samples = 3 330
value =   0253,   060 

(...) (...) (...) (...)



Random Forests & Boosted Trees
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• A single tree is not very robust, due to the greedy algorithm, small fluctuations in the training 
sample result in large changes in the model

• Prone to overfitting if not constrained by setting a maximum depth, the model learns the 
statistical fluctuations of the training data instead of the underlying distributions

• Two approaches use ensembles of decision trees to improve over the single model

• Random Forests train 𝑁 Decision Trees, randomizing the training in two ways to create slightly 
different models:

• Each tree is trained on a dataset created by sampling with replacement from the original 
training data (bootstrapping)

• In each node, only a random subset of all attributes is searched for the best split
• The prediction is then the average of all individual trees

• Boosting uses small trees (low maximum depth) that iteratively improve over the previous 
generation

• Both Random Forests and Boosted Decision Trees have proven suitable, robust methods for 
IACT event reconstruction



• There is no way to “calibrate” IACT energy reconstruction purely by measurements:

• No tens of Ge  to hundreds of Te  photon test beams
• Atmosphere part of the detector

⇒ Energy reconstruction is always based on simulated “training” data

• Classical approach is training a machine learning model per telescope type and averaging the 
predictions over the telescope events

• Tree based ensemble methods have proven robust and performant

• Random Forests
• Boosted Decision Trees

Energy Reconstruction
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Energy Reconstruction
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• As a gamma-ray observatory, for almost all science cases we can simplify to binary classification:

Signal, gamma rays ⇔ background, everything else

• Training needs labelled datasets for signal and background

• Signal is almost always taken from simulated gamma-ray events

• Background can either be simulations as well or taken from observations of “dark spots”

• Hadronic air showers:

• are much more expensive to simulate
• interaction models have known issues in describing air showers (muon puzzle)

• Using real observations for background training comes with its own caveats:

• Model might learn to differentiate simulations from observations
• Needs available observations matching conditions of observations to be analyzed

• MAGIC usually uses observed background, LST-  uses simulated protons

Particle Type Classification

50



Particle Type Classification

5 



Side note on comparing energies

52

• The energy regressor is only trained on gamma rays -> predicts “gamma-like” energy
• Hadronic showers create less Cherenkov light at the same true total energy
• Never compare events at the same true energy
• Use observables like Hillas intensity or an estimated gamma-ray energy



• Assume the source lies on the shower axis 
estimated by the Hillas parametrization

• Simplifies general 2D regression to

• |disp|:  D regression 
• sgn(disp): Binary classification

• ⇒ train one machine learning model for each task 
using the image features as input

Lessard, R. W., Buckley, J. H., Connaughton,  ., & Le Bohec, S. 
(200 ). A new analysis method for reconstructing the arrival 
direction of Te  gamma rays using a single imaging atmospheric 
Cherenkov telescope. Astroparticle Physics, 15( ),  - 8.
doi: 0. 0 6/S0927-6505(00)00 33-X

53

Monoscopic Reconstruction: The Disp-Method

https://doi.org/10.1016/S0927-6505(00)00133-X


• Showers are not perfectly symmetric 
along the main shower axis

• Allows models to learn and predict 
sign(disp)

• Usually, Random Forest Classifiers or 
Boosted Decision Trees

5 

The Disp-Method: Head-Tail Disambiguation



• We can also combine the individual disp 
predictions to form a stereo prediction

• Has shown slightly better performance than 
the 3D reconstruction in EventDisplay, 
especially at low multiplicities and high 
energies

• Usually does not use sgn(disp) prediction

• ⇒ Search for best-fit among all solutions.

Stereo-Disp

55



Advanced Reconstruction 
Methods
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• Several groups are working on using Deep Learning using Convolutional Neural Networks 
for IACT event reconstruction:

• https://gammalearn.pages.in2p3.fr/pages/ (based on pytorch)
• https://github.com/ctlearn-project/ctlearn (based on tensorflow)

• Predicting reconstructed properties directly from DL  images or even DL0 waveforms

• Shown to outperform Image Parameters + Random Forests under controlled conditions (simulations, 
good quality data)

• Seem to struggle more with data/monte carlo mismatches, changing conditions, in general less robust

Modern Machine Learning Approaches

58

https://gammalearn.pages.in2p3.fr/pages/
https://github.com/ctlearn-project/ctlearn


doi:10.1016/j.astropartphys.2024.103008

• Based on simulations, it is possible to have a “template” function that predicts the image of a telescope 
given the true parameters of the air shower (energy, direction, impact, 𝑋max) and the telescope 
properties (pointing, position on the ground).

• These templates can be used to perform a likelihood fit on the actual event data

• Initial method: ImPACT with look-up tables of the mean image built from specialized simulations 
interpolated at runtime

• FreePACT: a neural network trained to predict the likelihood of pixel values from the true gamma ray 
properties and the position and direction of the pixel replaces the template library

• Better description of the likelihood (not just mean)
• Can be trained on standard simulations

Schwefer, G., Parsons, R., & Hinton, J. (202 ). A hybrid approach to event reconstruction for atmospheric 
Cherenkov Telescopes combining machine learning and likelihood fitting. Astroparticle Physics, 163,  03008.
doi: 0. 0 6/j.astropartphys.202 . 03008

Likelihood-based Methods: ImPACT + FreePACT

59

https://doi.org/10.1016/j.astropartphys.2024.103008


Optimizing Event Selection
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• After having performed the event reconstruction, we are left with a list of air shower events with 
predicted properties, maybe even from multiple algorithms

• In the classical analysis scheme, as last step of the event analysis, we need to:

• Decide which set of reconstructed parameters to use
• Apply the gamma/hadron separation to only retain gamma ray candidate events
• Optionally apply additional event selection cuts, e. g. to discard badly reconstructed events

• How to optimize these decisions will vary greatly by your science case

• In current collaborations, people mostly start analysis at DL2 level and optimize for their analysis

• CTAO for most science cases, will hand out DL3 data, where this optimization has already happened.

• This is somewhat less flexible and restricts which science cases are possible / optimized for a given 
analysis configuration

From DL2 to DL3 Event Lists

6 



• There are many metrics that can be used to optimize event selection, most commonly:

• Point source detection sensitivity in a given observation time (0.5 h, 5 h, 50 h)
• Angular resolution
• Gamma ray efficiency
• Systematic uncertainties

• But: no clear high-level metrics for many science cases (extended sources, dark matter line 
searches, …)

• Optimizing event selection for point source sensitivity will not yield the best results for almost any 
other science case, it’s a very specific metric

• This is something you should keep in mind when using the public CTAO IRFs.

Optimizing event selection

62



Instrument Response 
Functions

63



What we discussed up to now is a very indirect form of measurement suffering from two effects:

 . Limited Acceptance

• Not all gamma rays that reach the Atmosphere create enough Cherenkov photons to trigger at 
least two telescopes

• Not all images survive the image cleaning and can be parametrized
• At least two telescopes are needed for stereo reconstruction in most cases
• Gamma/Hadron separation is not perfect, leading to rejecting gamma rays as false negatives

2. Limited Resolution

• All reconstruction methods have finite, non-negligible errors that can only be described on a 
statistical basis

IRF Formalism

6 



We model the whole measurement process stochastically:

IRF Formalism

65

Observed Signal Distribution

Instrument Response Function

𝑔 ෠𝐸, ො𝛼, መ𝛿, Ƹ𝑡 = න𝑅 ෠𝐸, ො𝛼, መ𝛿, Ƹ𝑡 𝐸, 𝛼, 𝛿, 𝑡 ⋅ 𝑓 𝐸, 𝛼, 𝛿, 𝑡 d𝐸 dΩ + 𝑏 ෠𝐸, ො𝛼, መ𝛿, Ƹ𝑡

True gamma-ray signal

Residual Background

• The goal of any gamma-ray high-level analysis is to solve the Inverse Problem of 
deducing 𝑓 from known g, 𝑅, 𝑏

• Computing 𝑅 requires datasets with known ground-truth (labelled datasets)

• In high energy astroparticle physics, simulations are the only way to obtain such datasets

• The measurement equation is an inhomogeneous Fredholm integral equation of the second kind,
by definition an ill-posed problem



IRF Factorization

66Effective Area

Instrument Response Function

𝑅 ෠𝐸, ො𝛼, መ𝛿 𝐸, 𝛼, 𝛿, 𝑡 = 𝐴eff 𝐸, 𝛼, 𝛿, 𝑡 ⋅ 𝑀 ෠𝐸 𝐸, 𝛼, 𝛿, 𝑡 ⋅ PSF ො𝛼, መ𝛿 𝐸, 𝛼, 𝛿, 𝑡

Point Spread Function

Energy Dispersion

• Thanks to very precise clocks and the time scales involved in the science cases of interest,
it is almost always possible to treat

𝑡 = Ƹ𝑡

• This still leaves us with a six-dimensional IRF that changes on minute time-scales
⇒ computationally infeasible

• Solution: Make strong assumptions on the statistical independence of the variables
⇒ factorization into independent, lower-dimensional IRF Components

• This assumption is wrong, energy and direction reconstruction are strongly correlated
⇒ Systematic errors



• In general, IRF components are computed from simulated events that have gone 
through the full low-level analysis chain

• Specific parametrizations of these components and how to store them in FITS files 
are defined in the Data Formats for Gamma-Ray Astronomy (GADF)

• Most components use tabulated values in parameter grids (energy, position in the 
field of view) of the discretized IRF components 

• Most IRF components in GADF are limited to being radially symmetric in the field of 
view ⇒ another wrong assumption that we likely need to lift for CTAO

• IRFs for specific observation conditions can be interpolated from a grid of IRFs 
computed from simulations

Computations of IRF 

67

https://gamma-astro-data-formats.readthedocs.io/en/v0.3/


• Effective area combines the detection efficiency with 
the sensitive area of the detector

• Converts event rates to flux per time and area

• Corrects for the non-detection of events

• Can be interpreted as the area of a perfect, direct 
detector

• GADF supports effective area as tabulated values in 
bins of true energy and Fo offset ⇒ radial symmetry

Effective Area
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Effective Area
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• Energy dispersion is the probability density of observing 
an event of true energy 𝐸 at a reconstructed energy ෠𝐸

• To reduce sparseness of the resulting matrix, GADF 
defines the energy dispersion in relative terms using:

𝜇 =
෠𝐸

𝐸

• Again, the energy dispersion is stored as tabulated 
values of this PDF in bins of true energy and the field of 
view offset ⇒ radial symmetry 

Energy Dispersion

70



• The PSF is the probability density of 
observing an event with true coordinates 𝛼, 𝛿
at reconstructed coordinates ො𝛼, መ𝛿

• GADF allows several descriptions

• Tabulated values
• Gaussian mixture model with three 

distributions
• King distribution

• All three are expressed in the distance 
from the point source 𝑟
⇒ radial symmetry around the point source

• Only supported in bins of true energy and 
Fo offset
⇒ radial symmetry in the Fo 

Point Spread Function

7 



• The background rate can in principle be computed from electron and hadronic simulations, but:

•  ery hard to obtain realistic simulations
• Much more uncertainty in hadronic interaction models
• Extremely cost intensive

• Instead, the background model will be computed from observations

• Excluding known gamma ray sources
• Combining many observations

• Also not without challenges

• Needs enough suitable observations
• Especially hard for early science
• Probably still needs to be re-fitted to the current observation conditions

Berge, David, S. Funk, and J. Hinton. "Background modelling in very-high-energy γ-ray astronomy." Astronomy & Astrophysics
 66.3 (2007), doi: 0. 05 /000 -636 :2006667 

Background Rate
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https://doi.org/10.1051/0004-6361:20066674


Point-Like IRFs

73Effective Area

Instrument Response Function

𝑅 ෠𝐸 𝐸, 𝛼, 𝛿, 𝑡 = 𝐴eff 𝐸, 𝛼, 𝛿, 𝑡 ⋅ 𝑀 ෠𝐸 𝐸, 𝛼, 𝛿, 𝑡

Energy Dispersion

• For the use case of spectral analysis of a point source, the IRF can be simplified further

• We select events only in a circular region around the assumed source position

• The radius of this region can be energy dependent and should scale with the PSF

• The PSF is not needed anymore, the effective area is reduced by discarding the non-selected 
events

• This also reduces the systematic error due to the factorization, as we compute the energy 
dispersion only on the well-reconstructed events inside the source region

• The computed IRF is fixed to the radius of the signal region (“θ²-cut”)

• Only computation of spectra possible, no sky maps or spectral cubes



Performance Benchmarks
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Flux Sensitivity
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• Gives the lowest flux of a gamma-ray point source 
still “detectable” in a given observation time

• Detectable in CTAO is defined as:

• Significance of at least 5σ according to the
Li & Ma likelihood ratio test¹

• At least  0 signal excess events over the 
background rate

• At least 5 % more excess than the background 
rate

• Usually for 50h of observation time

• Some caveats:

• Can only be defined vs. reconstructed energy
• Same binning required to be comparable

¹ Li, T. P., & Ma, Y. Q. Analysis methods for results in gamma-ray 
astronomy. ApJ, vol. 272, 1983. doi:10.1086/161295

https://doi.org/10.1086/161295


Angular Resolution
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Energy Bias & Resolution
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Event Types
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• Different science cases need different optimizations of the event selections

• Pulsar analysis is mostly not concerned with background events due to timing information
⇒ can live with higher background contamination

• Galactic plan has high source density ⇒ requires well reconstructed events to avoid source 
confusion

• But: DL3 IRFs are only valid for one set of event selection cuts

• How to give scientists the ability to chose?

• ⇒ Categorize events into “event types” and compute individual IRFs

• Scientists can choose appropriate types for their analysis, combine event types in joint likelihood 
analysis (See science tools lectures)

• Used extensively by Fermi LAT, in development for IACT / CTAO analysis, stay tuned

• Also reduces the systematic error introduced from the independence assumptions

Bernete, Juan et al. for the CTAO Consortium, “Performance update of an event-type based analysis for the Cherenkov 
Telescope Array”, ICRC 2023, doi: 0.22323/ .   .0738

https://doi.org/10.22323/1.444.0738


Habemus DL3
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Software
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8

1

Introduction

DPPS: Data Processing and Preservation 
System



DPPS Subsystems
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Introduction

Management

Subsystems
Pipeline

Subsystems

Ops
Operations 

Management System

BDMS
Bulk Data

Management System

WMS
Workload

Management System

DataPipe
Data Processing

Pipeline

QualPipe
Data Quality

PipelineSoftware &

workflows that

execute on

Data

ingest,

retrieve

Metadata

queries

Deployment & monitoring

CalibPipe
Calibration

Production Pipeline

SimPipe
Simulation

Production Pipeline
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Main Software Components
✦WMS is based on DIRAC
✦ BDMS is based on Rucio
✦ CalibPipe, DataPipe, QualPipe are all built on-top of ctapipe
✦ SimPipe uses CORSIKA 7, sim_telarray and ctapipe
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https://ctapipe.readthedocs.io/en/latest/

https://ctapipe.readthedocs.io/en/latest/


Conclusions
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• The low-level analysis of IACT data is complex and has to deal with very high data volumes
⇒ we cannot expect astronomers to learn all of this and download terabytes of data
⇒ by default, we give out only high-level, reduced, reconstructed data with IRFs (DL3)

• One of the main challenges is the high number of configuration options, lack of good intermediate 
metrics and slow feedback loops:

• What is the effect of changing {image extractor, cleaning levels, low-level cuts} on the science 
analysis of your source?

• How does it affect systematic uncertainties?

• You need a working, robust analysis chain first before trying new, experimental things

• Physical interpretation is key: how do you adjust your simulations when your DNN does not work on 
actual observations?

• Calibration vs. Simulation is always a trade-off: they meet in the middle

• Parametrizing the IRFs and making sure the DL3 data we hand out are useful to many scientists are 
the current main conceptual challenges, contribute!



Questions?
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