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Diffuse Emission at TeV Energies

• Steady-state CR diffusion models have been standard for the 100MeV to
100GeV regime for decades.

• Observations of the diffuse emission are now being performed at higher
energies. We need to connect the diffuse emission across the GeV–PeV
regimes.

• Previous work characterised the modelling uncertainty in the TeV regime over
a grid of steady-state models.

• For higher energies the rapid energy losses of the electrons necessitate the
consideration of discrete CR injection sites.

• The TeV γ–ray emission is then expected to vary on timescales ∼ lifetimes of
the sources.

• How large are these variations? Can a component of discrete sources explain
the TeV–PeV γ–ray excess observed by LHAASO and other observatories? 1



Model Setup

• CR hadrons are injected via a steady-state, smoothly varying distribution. CR
leptons are injected via discrete sources with finite lifetimes.

• Source lifetimes are varied from 10–200 kyr.
• Creation rates are varied from 0.02–0.002 yr–1 (average interval between
sources of 50–500 yr).

• We analyse 5Myr of simulation results for six different combinations of
source parameters (L010R100, L050R100, L100R100, L200R100, L100R050,
L100R500).

• Injection spectra are fit such that their post-diffusion spectra at the Solar
position reproduce measurements on the final timestep.

• ISM gas from Jóhannesson et al. 2018, SA50 source distribution, R12 ISRF,
PBSS GMF (see Porter et al. 2017, and references therein).
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CR Electron Variability Throughout the Milky Way

• Local measurements show a
potential cutoff around 1 TeV.

• Cutoff is reproduced for times with
no nearby sources.

• ⇒ Altering the Galaxy-wide
injection spectrum is not required
to reproduce the cutoff.

• This variability will be imparted onto
the γ rays, and can be quantified to
define a modelling uncertainty.
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Measuring the Variability
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• Need to define a measurement of
the variability.

• However, fluctuations are
non-symmetric and weighted
towards large increases.

• Define a ‘containment factor’, which
is the factor difference from the
steady-state values that contains
some percentage of the data.

• For example, 68% of the
time-dependent values are within a
factor S68 from the steady-state flux.
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CR Electron Variability Throughout the Milky Way

• Can apply the containment factor
analysis throughout the Milky Way.

• Below ∼1 TeV the electron flux is
steady throughout the Galaxy.

• Above 10 TeV the electron flux is
steady within the spiral arms and
fluctuates by factors &2 for the
inter-arm regions.

• The outer-Galaxy fluxes vary by
factors &4. 5.0 7.5 10.0 12.5
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Comparing GALPROP to H.E.S.S.
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• HGPS large-scale⇒ flux above
1 TeV minus resolved sources.

• HGPS residual⇒ large-scale
minus unresolved sources
(includes flux uncertainty).

• 5σ sensitivities for HGPS and
CTA’s proposed 10-year plan.

• GALPROP agrees with the lower
limits of the HGPS observations.

• CTA can be expected to make a
5σ detection with current plans.

6



Comparing GALPROP to LHAASO
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Polar Region Flux
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• Polar region flux above 1 TeV is
Galactic in origin.

• For most timesteps the IC emission
is the dominant component for
both Galactic polar regions.

• The polar flux then provides an
opportunity to constrain the
electron flux away from the Solar
neighbourhood with future
observations.
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Constraining the Source Parameters

• Lxxx⇒ source lifetime in kiloyears.
• Ryyy⇒ average time between
source creation in years.

• Showing four source parameter
combinations to represent the
variability across the
time-dependent models.

• Current measurements of the
diffuse emission are unable to
further constrain these source
parameters. 10−1 100 101 102 103
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Comparing GALPROP to IceCube
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Preliminary

• IceCube recently announced
model-dependent observations of
Galactic neutrinos.

• This neutrino emission can be used
to constrain hadronic components.

• All neutrino fluxes are per-flavour.
• GALPROP predictions are in
agreement with the
model-dependent IceCube fluxes.

• Working on quantifying the spatial
coincidence between GALPROP and
IceCube. 10



Summary

• The leptonic CR and γ–ray fluxes above 1 TeV experience large fluctuations
due to the discrete nature of the CR accelerators.

• Accurate γ–ray predictions will require precise locations of all CR
accelerators in the Galaxy. As precise locations are not currently known, we
have found the variability of the models.

• We found CTA should be able to observe the diffuse emission for the central
90◦ of the Galactic plane.

• For γ rays in the TeV–PeV regime an unresolved leptonic component is able
to reproduce the LHAASO excess with no alterations to the model.

• While the CR source parameters (lifetimes and creation rates) impact the
diffuse emission, we are unable to recover their values from current
measurements of the diffuse emission.

See arXiv:2411.03553 for more information. 11



Additional Slide: PWNe as Leptonic PeVatrons

• LHAASO Collaboration, et al. 2021 found >1 PeV γ rays from the Crab Nebula.
This result would require >1 PeV electrons.

• Cao, Z., et al. 2021 analysed 12 γ–ray sources with LHAASO, finding γ rays up
to 1.4 PeV. The only confirmed PWNe was the Crab Nebula, and an additional
nine sources have potential PWN counterparts.

• Burgess, D., et al. 2022 found 2 PeV electrons are required to explain the γ–ray
emission around the Eel PWN.

• Liu, Y.-M., et al. 2024 looked at 17 PWNe, 16 of which show CR electrons
>100 TeV. They state that 3 PWNe have CR electrons confidently confirmed
>PeV. Additionally, leptonic injection is approximately constant for the first
15 kyr.

• +others
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