

Searching for New Physics with CTAO

Analysis of the MSP and DM GCE

Hayden James, Prof. Martin White, Prof. Gavin Rowell, Dr. Sabrina Einecke, Prof. Roland Crocker, Prof. Emmanuel Moulin, Igor Reis

Overview

CTAO THE UNIVERSITY

- ✦ Motivations
- ¹ Physics Background
- **D** Modelling and Analysis
- ¹ Next Steps
- **Questions**

Motivations

3

- Galactic Centre Excess (GCE): Unexpectedly high flux of gamma rays from the centre of the Milky Way galaxy.
- May be consistent with either annihilation of dark matter, or an as-yet unresolved population of Millisecond Pulsars (MSPs).
- ✦ CTAO can attempt to determine which by looking at TeV gamma ray flux from the galactic centre.
- Hence, we model the gamma ray emission from the MSP source and the Dark Matter source, looking for differences in morphology at high energies.

By NASA/DOE/Fermi LAT Collaboration https://svs.gsfc.nasa.gov/11342 (original TIFF image, converted to png), Public Domain, https://commons.wikimedia.org/w/index.php? curid=72966833

4

- Previous work by (Gautam et al., 2022):
	- A population of MSPs could explain the Fermi GCE.
	- Predicts that CTAO should be able to resolve a small number of MSPs.
	- Uses "prompt" emission and inverse Compton emission for gamma rays.
		- Prompt component is curvature radiation from electrons and positrons trapped in the MSP's magnetosphere.
		- About 10% of MSP rotational kinetic energy goes into prompt component.
- electrons transfer energy to soft photons. \bullet Inverse Compton occurs when relativistic

GeV gamma ray spectrum from (Gautam et al., 2022).

The prompt emission of a single MSP is pulsed. The net emission of a population, however, is steady. We only consider the population as a whole, so we neglect the pulsed nature of the prompt component.

Emission of gamma rays from an MSP:

Prompt emission from an MSP:

I Inverse Compton emission from an MSP:

- What happens when these gamma rays hit the atmosphere?
- Cherenkov radiation:
	- Charge moving through air induces dipoles in surrounding molecules.
	- Dipole radiation interferes destructively unless the moving charge surpasses the local speed of light.

Image credit: Wang X, Li L, Li J, Wang P, Lang J, Yang Y. Cherenkov Luminescence in Tumor Diagnosis and Treatment: A Review. Photonics. 2022; 9(6):390. https://doi.org/10.3390/photonics9060390

- Several different models may be used, as long as they explain the Fermi GCE.
- Spatial Distribution: (Ploeg et al., 2020)
	- Use a "boxy bulge" probability density.
	- Randomly generate \sim 130000 MSPs.
	- Randomly assign each MSP a set of properties from a list (luminosity, prompt cutoff energy, spectral index).
- ✦ Prompt Emission: (Gautam et al., 2022)
	- $-$ Use an ECPL for emission in TeV -1 s -1 .
	- Apply parameters for each MSP individually and sum to obtain total prompt flux.
- **Other Emissions:**
- prompt spectrum use for inverse Compton. – Electron-positron spectrum can be related to

Boxy Bulge Spatial Distribution: (Freudenreich., 1998), (Ploeg et al., 2020)

$$
\rho_{\text{boxy bulge}}(R_s) \propto \text{sech}^2(R_s) \times \begin{cases} 1 & R \leq R_{\text{end}} \\ \exp(-(R - R_{\text{end}})^2/h_{\text{end}}^2) & R > R_{\text{end}}
$$

U Where: $R_s^{C_{\parallel}} = R_{\perp}^{C_{\parallel}} + \left(\frac{|z'|}{0.4425 \text{ kpc}}\right)^{C_{\parallel}}$

$$
\blacksquare \quad \text{And: } R_{\perp}^{C_{\perp}} = \left(\frac{|x'|}{1.696 \text{ kpc}}\right)^{C_{\perp}} + \left(\frac{|y'|}{0.6426 \text{ kpc}}\right)^{C_{\perp}}
$$

- R_{end} = 3.128 kpc; h_{end} = 0.461 kpc; C_{II} = 3.501; C_I = 1.574. These are best fit values.
- The coordinates (x',y',z') are in the Boxy Bulge frame, which is rotated relative to the galactic centre frame by 13.79° about the z axis, and then 0.023 $^{\circ}$ about the new y axis.
- In the galactic centre frame, Earth is located at $(-R_0,0,0)$, where R_0 is approximately 8.3 kpc.

11

Boxy Bulge Spatial Distribution: (Freudenreich., 1998), (Ploeg et al., 2020)

 $\rho_{\text{boxy bulge}}(R_s) \propto \text{sech}^2(R_s) \times \begin{cases} 1 & R \leq R_{\text{end}} \\ \exp(-(R - R_{\text{end}})^2/h_{\text{end}}^2) & R > R_{\text{end}} \end{cases}$

- Use this distribution to define a probability density, and then apply rejection sampling to get positions of the population:
	- For each coordinate (x,y,z) in the galactic frame, pick a random number in some large range.
	- Transform these coordinates to the Boxy Bulge frame.
	- Generate the rho value for these coordinates. This value will always be in the range [0,1].
	- Treat this as a probability: accept the coordinates if a random number is lower than the rho value. Then generate a new set of coordinates.
	- Repeat until we have \sim 130000 positions. Obtain longitudes and latitudes using simple geometry.

12

From here, associate a given set of three MSP parameters (prompt luminosity, prompt cutoff energy, prompt spectral index) with each position. Generate a prompt spectrum for each:

$$
F(E) = K * ((\frac{E}{1 \, GeV})^{-Q_{\text{prompt}}}) * \exp(-(\frac{E}{E_{\text{cut}}})^{2/3})
$$

Here, Q is the spectral index, and K is a normalisation defined by:

$$
K = \frac{L_{\text{prompt}}}{4 \pi (r_{GC})^2} / X
$$

Where r_{GC} is the distance to Earth in the Galactic Centre frame, and X is given by:

$$
X\!=\!-({3\over 2})((\frac{E_{\rm\it cut}}{1\,GeV})^{2/3})(\Gamma\big(3\!-\!3\frac{Q_{\rm\it prompt}}{2}\big))\big(\Gamma^{\rm x}\big((3\!-\!3\frac{Q_{\rm\it prompt}}{2}\big),({E_{\rm\it max}\over E_{\rm\it cut}})^{2/3}\big)\!-\!\Gamma^{\rm x}\big((3\!-\!3\frac{Q_{\rm\it prompt}}{2}\big),({E_{\rm\it min}\over E_{\rm\it cut}})^{2/3}\big))
$$

- **The symbol** Γ^X **represents the regularised upper incomplete gamma function. The symbol** Γ is the normal gamma function.
- The power of (2/3) in the exponential is a phenomenological "beta" factor.

CTAO Analysis - MSPs

- ✦ Generate a population of MSPs with associated galactic longitude and latitude, distance, and differential prompt flux.
- ✦ Prompt emission parameters (spectral index and cutoff energy) can be related to those of electron-positron pairs:

$$
-E_{\text{cut, prompt}} = \left(\frac{3\bar{h}c}{2r_c}\right)\left(\frac{E_{\text{cut, elec}}}{m_e}\right)^3
$$

$$
-Q_{\text{prompt}} = \left(\frac{Q_{\text{elec}} - 1}{3}\right)
$$

- Where r_c is the radius of the light-cylinder. This assumes the electron emission has the same form as the prompt emission.
- Multiply by loss times to obtain a steady-state $e^{+/-}$ spectrum for use in determining gamma ray emission from $e^{+/-}$ pairs.
- Apply propagation software to determine the distance travelled before interacting.
	- More energetic e^{t} should interact sooner, causing the MSP emission to form clumps at higher energies.
- gamma rays. Flux from interactions then applied to generate a skymap in prompt and inverse Compton

15

Next Steps

- MSP modelling and analysis is currently underway.
- Spatial distribution sampling has been implemented.
- Prompt emission modelling is functional, inverse Compton is in progress.
- Beyond this, generation of prompt spectral parameters may be improved.
- There is a possibility of simulating dark matter emission after the MSP model is fully implemented.
	- Production of other particles by dark matter could also be considered.
- Compare spatial and spectral morphologies of MSP and dark matter models at various energies.
- Potential to look at radio and x-ray emissions from both MSP and DM sources. Equivalent to including synchrotron emission for MSPs.

17

Questions?

Backup Slides

B Synchrotron emission from an MSP:

