

Institiúid Ard-Léinn | Dublin Institute for Bhaile Átha Cliath | Advanced Studies

Ancera Supernova Remnant G288.8-6.3 in the context of multiwavelength observations

Christopher Burger-Scheidlin

ALL MCMXL BLANK

#DIASdiscovers dias.ie

13 Nov 2024 CTAO | Australia Meeting #2 2024

@Parramatta, NSW, Australia

Cosmic rays (CRs)

Victor Hess 1914/15

C. Burger-Scheidlin

Supernova remnants

Source: SNR evolution, Vink 2020

Phases:

C. Burger-Scheidlin

- Free expansion phase
- Sedov-Taylor phase
- Radiative phase

INMENSVM PERAGRAMVS

- Hadronic
 - Pion decay

- Leptonic
 - Synchrotron radiation
 - Inverse Compton scattering

Figure: Gamma-ray flux from various SNRs (Funk, TeVPa 2011)

Credits: R. Brose, PASTO, 5-7 September 2022.

More and more observational constraints:

Models need to account for spectral evolution AND morphology

→ **Problem**: often complicated regions, interaction with gas/clouds etc.

Credits: R. Brose, PASTO, 5-7 September 2022.

C. Burger-Scheidlin 13 Nov 2024 Ancora Supernova Remnant G288.8-6.3 in the context of multiwavelength observations. Parramatta, NSW, Australia

Cosmic-ray escape

The mechanism

C. Burger-Scheidlin 13 Nov 2024 Ancora Supernova Remnant G288.8-6.3 in the context of multiwavelength observations. Parramatta, NSW, Australia

Cosmic-ray escape

The mechanism

Credits: R. Brose, PASTO, 5-7 September 2022.

C. Burger-Scheidlin 13 Nov 2024 Ancora Supernova Remnant G288.8-6.3 in the context of multiwavelength observations. Parramatta, NSW, Australia

Cosmic-ray escape

The mechanism

C. Burger-Scheidlin 13 Nov 2024 Ancora Supernova Remnant G288.8-6.3 in the context of multiwavelength observations. Parramatta, NSW, Australia

Detection of SNRs

- Around 300 currently detected (see D. Green's catalogue)
 - Most of which at radio wavelengths first
 - Though non-thermal spectrum and shell-like morphology
- Around 10% of which are seen at gamma-ray energies
- Few in x-rays (~10)
- Few in optical
- Very few at very-high-energy (VHE) gamma-rays

Recent detections with ASKAP/EMU

G308.73+1.38 SNR candidate (Lazarevic et al. 2024)

A Catalogue of Radio Supernova Remnants and Candidate Supernova Remnants in the EMU/POSSUM Galactic Pilot Field

Brianna D. Ball^{0,1*} Roland Kothes^{0,2,1} Erik Rosolowsky^{0,1} Jennifer West^{0,2,3} Werner Becker^{0,4,5} Miroslav D. Filipović^{0,6} B.M. Gaensler^{0,3} Andrew M. Hopkins^{0,7} Bärbel Koribalski^{0,4,6} Tom Landecker^{0,2} Denis Leahy^{0,9} Joshua Marvil^{0,10} Xiaohui Sun^{0,11} Filomena Bufano^{0,12} Ettore Carretti^{0,13} Adriano Ingallinera^{0,12} Cameron L. Van Eck^{0,14} and Tony Willis⁰²

0.80°

0.60°

0.40°

G327.1-1.1

B. Ball et al. 2023

C. Burger-Scheidlin

13 Nov 2024

Recent detections with ASKAP/EMU

SNR G288.8-6.3 (Filipović, ..., CBS, et al. 2023) G308.73+1.38 SNR candidate (Lazarevic et al. 2024) -64:00:00 (a) G323.5+0.1G326.3-1.8 0.20° -1.50° 0.0003 30:00 0.10° Declination -65:00:00 0.00° -2.00°-0.0002 323.5° 323.4° 326.5° 323.6° 30:00 G327.4 + 0.40.0001 0.80° 1.10° -66:00:00 0.60° 309.0 308.9 308.8 308.7 308.6 308.5 308 4 Galactic longitude 1.00° 0.0000 0.40° 0.90 A Catalogue of Radio Supernova Remnants and Candidate Supernova 40:00 35:00 10:30:00 **Remnants in the EMU/POSSUM Galactic Pilot Field** 327.5° 327.2° **Right Ascension** 25:00 Brianna D. Ballo, 1* Roland Kotheso, 2.1 Erik Rosolowskyo, 1 Jennifer Westo, 2.3 Werner Beckero, 4.5 Miroslav D. Filipović⁰,⁶ B.M. Gaensler⁰,³ Andrew M. Hopkins⁰,⁷ Bärbel Koribalski⁰,^{8,6} Tom Landecker⁰,² Denis Leahy⁰,⁹ Joshua Marvil⁰,¹⁰ Xiaohui Sun⁰,¹¹ Filomena Bufano⁰,¹²

B. Ball et al. 2023

13 Nov 2024

Ettore Carrettio,13 Adriano Ingallinerao,12 Cameron L. Van Ecko,14 and Tony Williso2

Recent detections with ASKAP/EMU

.... and many others on their way

EMU 944 MHz

red circles: known SNRs teal: SNR candidates green: HII regions from the WISE catalogue.

Ancora Supernova Remnant G288.8-6.3 in the context of multiwavelength observations. Parramatta, NSW, Australia

Gamma-ray astronomy

VERITAS

C. Burger-Scheidlin

13 Nov 2024

Credit: Fermi Collaboration

HAWC

LHAASO

Gamma-ray astronomy: CTAO

C. Burger-Scheidlin 13 Nov 2024 Ancora Supernova Remnant G288.8-6.3 in the context of multiwavelength observations. Parramatta, NSW, Australia

CTAO

Research questions looking at High-Latitude SNRs

- What energies can cosmic rays be accelerated up to in SNRs? (constrain models of CR acceleration)
- Can we resolve morphological features in these SNRs? See Halos?
- Leptonic versus hadronic models
- Can we build the SNR population to get more insight? (currently around 30 at HE (7 high-lat), 10 at VHE)

Research questions (continued...)

- Impact of CRs on the ISM? Dynamics, drive outflows, CR heating, ...
- Older SNRs → CR escape (Brose et al. 2020)
- Impact on habitability of planets

G288.8-6.3

NSW, Australia

Ancora SNR: G288.8–6.3

C. Burger-ScheidMusca

Ancora SNR: G288.8–6.3

NSW, Australia

Ancora SNR: G288.8

SNR G288.8-6.3

 Coordinates: GLON/GLAT: 288.8°/-6.3° R.A./ Dec: 157.488°/-65.214°

Distances:

1.3 kpc

~140 pc from plane

Radio detection: ASKAP at 943MHz Extension: ~0.8° Spectral index $\alpha = -0.41 \pm 0.12$ Low surface brightness Age (>13kyr?)

SNR G288.8-6.3

Deep Optical Emission-Line Images of Nine Known and Three New Galactic Supernova Remnants

ROBERT A. FESEN,¹ MARCEL DRECHSLER,² XAVIER STROTTNER,³ BRAY FALLS,⁴ YANN SAINTY,⁵ NICOLAS MARTINO,⁶ RICHARD GALLI,⁷ MATHEW LUDGATE,⁸ MARKUS BLAUENSTEINER,⁹ WOLFGANG REICH,¹⁰ SEAN WALKER,¹¹ DENNIS DI CICCO,¹¹ DAVID MITTELMAN,¹¹ CURTIS MORGAN,⁴ AZIZ ETTAHAR KAEOUACH,¹² JUSTIN RUPERT,¹³ AND ZOUHAIR BENKHALDOUN¹⁴

Figure 26. Top: Deep [O III] image (left) and composite [O III] + H α (right) images of the SNR G288.8-6.3. Bottom: Color composite of [O III], H α + RGB images of the G288.8-6.3

13 Nov 2024

- Energy range (100 MeV 1 TeV)
- FoV ~20% of whole sky
- Using Fermipy (v1.1.6) and Fermitools (v.2.2.0)
- 4FGL-DR3 Fermi catalogue (Abdollahi et al. 2022)
- 15 years of data (Aug 2008 July 2023)
- Standard binned maximum-likelihood analysis

C. Burger-Scheidlin

Credit: Fermi Collaboration

- Residual map with overlaid radio contours
- Several hotspots seen overlapping with radio

13 Nov 2024

Table 1: List of different models and their relative log-likelihood values compared to the base model, with $\mathcal{L}_0 = 435708.381$, and $\Delta ln(\mathcal{L}) = ln(\mathcal{L}_i) - ln(\mathcal{L}_0)$, and difference in model parameters compared to the base model ($\Delta k = k_i - k_0$). The two best-fit models, both presented in this work, are marked in bold font.

Model N ^o	J1028 incl.	Spatial model	Spectral model	$\Delta ln(\mathcal{L})$	Δk	ΔAIC	
0	Y			0	0	0	
1	Ν			-24.87	-5	39.74	
2	Y	RadialDisk	PowerLaw	16.50	5	-22.99	
3	Ν	RadialDisk	PowerLaw	9.54	0	-21.08	
4	Ν	RadialDisk	LogParabola	9.80	1	-19.59	
5	N	Radio template	PowerLaw	7.76	-1	-19.51	

• Before modelling

- After modelling with
 - RadialDisk
 - PowerLaw

Resulting map

Resulting map
... and SED

	A&A, 68 https://do © The Au	84, A150 (2024) si.org/10.1051/0004-6361/202348348 uthors 2024		
Table 2: Best-fit parameters of the spatial template derived from template deri	Gai <i>RadialDi:</i> he radio s ^{Chr} Pranjuj	mma-ray detection (rei istopher Burger-Scheidlin ^{1,2}), Roi priya Goswami ^{5,6} , Enrique Mest	of newly discovered mnant: G288.8–6.3 bert Brose ^{1,3} , Jonathan Macked	Astronomy Astrophysics Ancora supernova
Parameter	Unit		en e	⁶ , Miroslav D. Filipović4
Position R.A. / Dec GLON / GLAT	deg / deg deg / deg		157.488 / -65.214 288.8 / -6.3	and Iurii Sushch ^{6,9,10}
Model N ^o		2	3	5
J1028 incl.		Y	Ν	Ν
Spatial model		RadialDisk	RadialDisk	SpatialTemplate
Spectral model		PowerLaw	PowerLaw	PowerLaw
TS	—	44.74	77.14	70.98
N ^o of predicted photons	—	978	1331	1174
Photon flux	$ph cm^{-2} s^{-1}$	$(2.29 \pm 0.45) \times 10^{-9}$	$(3.14 \pm 0.41) \times 10^{-9}$	$(2.74 \pm 0.37) \times 10^{-9}$
Energy flux	$MeV cm^{-2} s^{-1}$	$(4.29 \pm 1.03) \times 10^{-6}$	$(4.80 \pm 0.91) \times 10^{-6}$	$(3.62 \pm 0.68) \times 10^{-6}$
$> 1 \mathrm{GeV}$ (to $316 \mathrm{GeV}$)	$MeV cm^{-2} s^{-1}$	$(3.08 \pm 0.83) \times 10^{-6}$	$(3.29 \pm 0.78) \times 10^{-6}$	$(2.13 \pm 0.66) \times 10^{-6}$
Spectral parameters No	$MeV^{-1} cm^{-2} s^{-1}$	$(9.17 \pm 1.81) \times 10^{-13}$	$(1.23 \pm 0.16) \times 10^{-12}$	$(1.15 \pm 0.15) \times 10^{-2}$
Γ E ₀	MeV	2.21 ± 0.12 1000 [*]	2.32 ± 0.11 1000*	2.41 ± 0.13 1000*
Spatial parameters				
Extension	deg	0.92 ± 0.07	0.92 ± 0.06	
$\mathrm{TS}_{\mathrm{ext}}^{\dagger}$	—	33.92	52.56	

* Parameter fixed

[†] Test statistic for the extension hypothesis against the null hypothesis of a point-like source

MWL

- Naima modelling (computation of non-thermal radiation from relativistic particle populations)
- Only upper limits for X-rays
- Observations needed for good constraints:
 - VHE
 - hard X-ray

Table of high-latitude SNRs

Table 4. Comparison of Ancora SNR to fluxes and photon spectral indices of other known high-latitude SNRs detected at high energies, sorted by their total energy flux.

Source name	Extension (deg)	Energy flux (MeV cm ⁻² s ⁻¹) 1 GeV-1 TeV	Photon spectral index –	Reference	Radio extension (deg)
Ancora SNR/G288.8–6.3	0.92	$(3.29 \pm 0.78) \times 10^{-6(\perp)}$	$2.31 \pm 0.11^{(\perp)}$	This work	~0.8 (Filipovic et al. 2023)
G150+4.5	1.5	$5.20 \times 10^{-5(*)}$	$1.62 \pm 0.04_{stat} \pm 0.22_{sys}{}^{(\dagger)}$	Devin et al. (2020)	1.25-1.5 (Gao & Han 2014)
G17.8+16.7/ FHES J1723.5-0501	0.73	$(1.38 \pm 0.26) \times 10^{-5(\nabla)}$	$\begin{array}{l} 1.83 \pm 0.02_{stat} \pm 0.05_{sys} \\ 1.97 \pm 0.08_{stat} \pm 0.06_{sys} \end{array}$	Araya et al. (2022) Ackermann et al. (2018)	~0.48 (Condon et al. 1998)
G296.5+10.0/FHES J1208.7-5229	0.7	$8.17 \times 10^{-6(**)}$ (1.13 ± 0.24) × 10 ^{-5(∇)}	$\begin{array}{c} 1.85 \pm 0.13 \\ 1.81 \pm 0.09_{stat} \pm 0.05_{sys} \end{array}$	Araya (2013) Ackermann et al. (2018)	~0.7 (Milne & Hayes 1994)
SN 1006/G327.6+14.6	0.1	$(3.63 \pm 1.62) \times 10^{-6(\dagger\dagger)}$	1.57 ± 0.11	Condon et al. (2017)	~0.5 (Reynoso 2006)
Calvera SNR/G118.4+37.0	0.53	$3.06 \times 10^{-6(\nabla\nabla)}$	$1.66 \pm 0.10_{\text{stat}} \pm 0.03_{\text{sys}}$	Araya (2023)	~0.45 (Arias 2022)
G166+4.3	~0.3	$2.87 \times 10^{-6(**)}$	2.7 ± 0.1		0.6-0.9 (www.mrao.cam.ac.uk)

Notes. The list includes data from the SNR catalogue provided by Ferrand & Safi-Harb (2012). ^(*)snrcat.physics.umanitoba.ca; ^(⊥) values taken from model 3, energy range 1 GeV–316 GeV; ^(*)calculated using data from Table 2 in Devin et al. (2020), and using results for the radial Gaussian model and log-parabola spectral model; ^(†)log-parabola model, α given in Table, $\beta = 0.07 \pm 0.02_{\text{stat}} \pm 0.02_{\text{sys}}$; ^(∇) from FITS data provided with Ackermann et al. (2018); ^(**)calculated using data from Table 2 in Araya (2013); ^(††)range is 1 GeV–2 TeV; ^($\nabla \nabla$)calculated using data from Araya (2023).

CTAO performance: Sensitivity

CTAO performance: Sensitivity

CTAO performance: Angular resolution

Conclusions/Outlook

- MWL observations needed to constrain models of SNRs
- Radio SNRs are already increasing the number of SNRs, finding gamma-ray counterparts is important
- High Galactic SNRs are good objects because they expand in unperturbed environments, thus
 - less risk of source confusion
 - possibility to observe CR escape
- Fermi-LAT sensitive enough to detect, but not to answer the science questions
- Upcoming CTA will likely be capable of detecting many of them with good sensitivity/resolution, larger FoV

Part 2: G304.4-0.2

Part 2: G304.4-0.2

ASAKP-EMU colour map White contours: H.E.S.S. Galactic Plane Survey

red: ASKAP-EMU green: MeerKAT blue: 12µm WISE

Institiúid Ard-Léinn | Dublin Institute fo Bhaile Átha Cliath | Advanced Studies

Ancera Supernova Remnant G288.8-6.3 in the context of multiwavelength observations

Christopher Burger-Scheidlin

#DIASdiscovers dias.ie

13 Nov 2024 CTAO | Australia Meeting #2 2024 ALL MCMXL BIN

@Parramatta, NSW, Australia

Backup

Figure: github.com/carmeloevoli/The_CR_Spectrum (2023) bservations. Parramatta, NSW, Australia

Cosmic-ray diffusion

- Diffusion coefficient in SNRs many orders of magnitude smaller that the Galactic one (Drury 1983)
- But, according to theory, CR can drive some turbulence which create B-fields in the surroundings of the SNR → CR bubbles with intermediary diffusion coefficient (Ohira 2011, Brose 2021)

Dust intensity in the region

 Thermal, unpolarised dust emission by *Planck*

#DIASdiscovers

C. Burger-Scheidlin

13 Nov 2024