SKAO Science Operations update: a 'year in the life' of the world's largest radio telescope Jess Broderick – SKA-Low Operations Scientist

CTAO | Australia Meeting #2 2024, Western Sydney University

We recognise and acknowledge the Traditional Owners of the lands on which our facilities are located, and pay our respects to their Elders past and present.

Australia's Indigenous people are the first scientists and have long standing knowledge of the Universe that we continue to build on today.

We acknowledge the Wajarri Yamaji as the Traditional Owners and native title holders of Inyarrimanha Ilgari Bundara, the CSIRO Murchison Radio-astronomy Observatory, where we are building the SKA-Low telescope in Australia.

We acknowledge the Whadjuk Noongar as the traditional owners of the land where our Science Operations Centre is situated in Perth, and the Southern Yamatji as the traditional owners of the land where our Engineering Operations Centre is situated in Geraldton.

I also pay my respects to all First Nations people in attendance.

SKA project timeline

(As of 2024 October 10. Note: timeline subject to change)

Milestone e (earliest)	event	SKA-Mid (end date)	SKA-Low (end date)		
AA0.5	4 dishes 4 stations	2026 Feb	2024 Dec		
AA1	8 dishes 18 stations	2026 Oct	2026 Jan		
AA2	64 dishes 64 stations	2027 Aug	2026 Nov		
AA *	144 dishes 307 stations	2028 Jun	2028 Feb		
Operations Readiness Review		2028 Sep	2028 May		
Formal end of construction		2029 Mar/Apr			
AA4	197 dishes 512 stations	TBD	TBD		

\rightarrow The time for detailed planning is now!

https://www.skao.int/en/science-users/118/ska-telescope-specifications **Anticipated science performance: Braun et al. 2019 (arXiv:1912.12699)**

Construction happening now!

Commissioning (AA0.5 +)

- Science Verification (AA2, AA*)
- Community involvement!
- Data immediately public.
- Full dress rehearsal!
- Some SRCNet resources for analysis.
- Observed in dedicated ~week-long blocks + single observations interspersed throughout.

Cycle 0 + (AA*)

SKA project tir

(As of 2024 October 10. Note: timeline

Milestone e (earliest)	SKA-M (end da	
AA0.5	4 dishes 4 stations	2026 F
AA1	8 dishes 18 stations	2026 C
AA2	64 dishes 64 stations	2027 A
AA *	2028 J	
Operations Review	2028 S	
Formal end construction	of	2029 N

 \rightarrow The time for

Access Rules and Regulations for the SKA Observatory

01
UN
PC
20
RE

Role	Name	Designation	Affiliation	Signature	Date
Author	Antonio Chrysostomou	Deputy Director of Operations	SKAO	Antonio Chrysostomoi	¹ 2024-10-21
Author	Shari Breen	Head of Science Operations	SKAO	shari Breen	2024-10-22
Author	Tyler Bourke	Project Scientist	SKAO	Ifen a ke	2024-10-21
Owner	Lewis Ball	Director of Operations	SKAO	Jewis T Bell.	2024-10-21
Approver	Robert Braun	Science Director	SKAO	Robert Braun	2024-10-21
Released by	Philip Diamond	Director- General	SKAO	Philip fromand	2024-10-21

NRESTRICTED 24-10-17 ELEASED

<u>ice-users/118/ska-telescope-specifications</u> e: Braun et al. 2019 (arXiv:1912.12699)

ening now!

ommissioning AA0.5 +)

cience Verification **AA2, AA*)**

pmunity involvement! ata immediately public. Ill dress rehearsal! bme SRCNet resources for alysis. bserved in dedicated week-long blocks + single servations interspersed roughout.

ycle 0 + (AA*)

SKAO Science Operations: a team effort

SKAO Science Operations: a team effort

Yearly team meeting + site visit; **2024 September**

Working closely with the Science Commissioning team

- phase and amplitude closure, developing a commissioning calibrator database, etc.).

3x SKA-Low Commissioning Scientists Recruitment commencing soon

• This team also growing; ultimately 7 members of the SKA-Low commissioning team in Perth.

• Science Operations will support AA0.5+ commissioning observations (e.g. bandpass stability,

ng	Shivani Bhandari SKA-Low Commissioning Scientist	Giulia Macario SKA-Low Commissioning Scientist
	<image/>	

Tools for the community

<page-header></page-header>	Subar AA*	rray Configuration *	÷	Number of Stations 307
Continuum Integration Time * 1 Induit Central Prequency * 200 Mitz 300 Mitz 301 Mitz 302 Mitz 303 Mitz 304 Mitz 305 Mitz 306 Mitz 307 Mitz 308 Mitz 309 Mitz 319 Mitz 329 Mitz 329 Mitz 329 Mitz 320 Mitz 320 Mitz 320 Mitz 320 Mitz 320 Mitz 320 Mitz 321 Mitz 3220 Mitz 3230 <th>Degrees</th> <th>; Right Ascension * 00:00:00.0</th> <th>Declination * -26:42:15.0</th> <th>Minimum Elevation * 45</th>	Degrees	; Right Ascension * 00:00:00.0	Declination * -26:42:15.0	Minimum Elevation * 45
integration Time * 1 hours 200 Mitz 201 Mitz	c	ontinuum		
Central Prequency* MHz 200 MHz 200 MHz 300 MHz 300 MHz 300 MHz 1 Continuum Bandwidh* 300 MHz 1 Continuum Bandwidh* 300 MHz Spectral Resolution Sast kHz (8.1 km/s) Spectral Resolution SA3 kHz (8.1 km/s) 1 Spectral organization 3.43 kHz (8.1 km/s) Effective resolution 1 Spectral organization 5.43 kHz (8.1 km/s) Spectral organization 1 Spectral organization 2.543 kHz (8.1 km/s) Spectral organization 1 Spectral organization 3.43 kHz (8.1 km/s) Spectral organization 1 Spectral organization 2.543 kHz (8.1 km/s) Spectral organization 1 Spectral organization 1 Spectral organization 2.543 kHz (8.1 km/s) Spectral organization 1 Spectral organization 2.520 rad/m ² Spectral organization 2.20 ra		Integration Time * 1	hours	Results
Continuum Bandwidth* MHz 300 MHz 1 Image Weighting * Spectral Resolution 5.43 kHz (8.1 km/s) Spectral Averaging * Effective resolution 1 Image Weighting * 1 Image Weighting * <td></td> <td>Central Frequency * 200</td> <td>MHz</td> <td>Weighted continuum sensitivity 9.53 uJy/beam (1.32)† Continuum confusion noise 7.85 uJy/beam</td>		Central Frequency * 200	MHz	Weighted continuum sensitivity 9.53 uJy/beam (1.32)† Continuum confusion noise 7.85 uJy/beam
Number of sub-bands * 0 1 Image Spectral Resolution 5.43 kHz (8.1 km/s) 5.43 kHz (8.1 km/s) Spectral Averaging * Effective resolution 1 5.43 kHz (8.1 km/s) Spectral Averaging * Effective resolution 1 5.43 kHz (8.1 km/s) Image Weighting * Robust Value 0 Total spectral sensitivity 1 5.43 kHz (8.1 km/s) Briggs Robust Value 0 Total spectral sensitivity 1 5.43 kHz (8.1 km/s) Briggs Robust Value 0 Total spectral sensitivity 1.22.0 rad/m ² Waimum Faraday depth extent 4.3 rad/m ² Maximum Faraday depth extent 4.3 rad/m ² Waimum Faraday depth extent 2.20 rad/m ² Weighting correction factor (30% bandwidth) Weighting correction factor (single channel) Zoom Window Yusar Search (PSS)		Continuum Bandwidth * 300	MHz	Continuum sensitivity 12.35 uJy/beam Continuum synthesized beam-size 7.8" x 7.4" Continuum surface-brightness sensitivity
Spectral Resolution 5.43 kHz (8.1 km/s) Spectral Averaging * Effective resolution 1 5.43 kHz (8.1 km/s) Image Weighting * Briggs Briggs Robust Value 0 0 VI HM of the RMSF 0.1 rad/m ² Maximum Faraday depth extent 4.3 rad/m ² Warning: You are approaching the confusion lint given the synthesized beam-size and frequency. 1 Viewighting correction factor (30% bandwidth) 22.0 rad/m ² Warning: You are approaching the confusion lint given the synthesized beam-size and frequency. 1 Viewighting correction factor (30% bandwidth) 220 rad/m ² Variang correction factor (30% bandwidth) 200 Window Pulsar Search (PSS)		Number of sub-bands * 1	0	Weighted spectral sensitivity 1.62 mJy/beam (1.39)‡ Spectral confusion poise
Spectral Averaging * Effective resolution 1 5.43 kHz (8.1 km/s) Image Weighting * Robust Value Briggs 0 Maximum Faraday depth extent 4.3 rad/m ² Maximum Faraday depth 22.0 rad/m ² Warning: You are approaching the confusion limit given the synthesized beam-size and frequency. 1 Veighting correction factor (30% bandwidth) 20 weighting correction factor (single channel) Zoom Window Pulsar Search (PSS)		Spectral Resolution 5.43 kHz (8.1 km/s)		8.12 uJy/beam Total spectral sensitivity 1.62 mJy/beam
Image Weighting * Robust Value 0 <td< td=""><td></td><td>Spectral Averaging *</td><td>Effective resolution 5.43 kHz (8.1 km/s)</td><td>7.8" x 7.6" Spectral surface-brightness sensitivity 838.48 K</td></td<>		Spectral Averaging *	Effective resolution 5.43 kHz (8.1 km/s)	7.8" x 7.6" Spectral surface-brightness sensitivity 838.48 K
222.0 rad/m ⁴ Warning: You are approaching the confusion limit given the synthesized beam-size and frequency. † Weighting correction factor (30% bandwidth) ‡ Weighting correction factor (single channel) Zoom Window Pulsar Search (PSS)		Image Weighting * Briggs	Robust Value 👻	FWHM of the RMSF 0.1 rad/m ² Maximum Faraday depth extent 4.3 rad/m ² Maximum Faraday depth
t Weighting correction factor (30% bandwidth) t Weighting correction factor (single channel) Zoom Window Pulsar Search (PSS)				222.0 rad/m ² Warning: You are approaching the confusion limit given the synthesized beam-size and frequency.
Zoom Window Pulsar Search (PSS)				t Weighting correction factor (30% bandwidth) # Weighting correction factor (single channel)
Pulsar Search (PSS)	Zo	oom Window		
	Pt	ulsar Search (PSS)		

© SKAO 2024 | Version 1.4.2

https://www.skao.int/en/science-users/ska-tools

MID

Tools for the community

- Like subarrays, users will be able to select from a • Collaborated with the SKA science working groups to define series of SKA-Low substation templates. this first set of templates: 32 for SKA-Mid; 27 for SKA-Low.
- Document released for feedback (questionnaire with six open-ended questions) and refinement.
- Python simulation tool also available.

https://www.skao.int/en/science-users/ska-tools

• Document includes 18, 12, 9 and 6m diameter examples. 18 and 12m for cross-correlation; 9 and 6m for fly's eye mode.

Staged delivery memo and software package

- Memo (v. 3): <u>https://www.skao.int/en/science-users/ska-tools/494/ska-staged-delivery-array-assemblies-and-subarrays</u>
- Software interface to the antenna coordinates.
- SKAO repository: <u>https://gitlab.com/ska-</u> telescope/ost/ska-ost-array-config
- Detailed documentation in a Jupyter notebook.
- Allows you to
 - Configure a custom subarray.
 - Simulate interferometric observations.
 - Plot array layout and *uv* coverage.
 - Export the layout to CASA for more comprehensive simulations.
- Figure on the right plots baseline distribution and uv coverage of two Mid subarrays.

SKAO

SKAO staged delivery, array assemblies and layouts

SKAO-TEL-0002299	Revision 03
Classification:	UNRESTRICTED
Document type:	REP
Date:	2024-10-03
Status:	RELEASED

Role	Name	Designation	Affiliation	Signature	Date
Author	Sarrvesh Sridhar and Science Operations	Operations Scientist	SKAO		
Owner	Shari Breen	Head of Science Operations	SKAO		
Approver	Luca Stringhetti	Acting Director of Programmes	SKAO		
Released by	Lewis Ball	Director of Operations	SKAO		

Staged delivery memo and software package

- Memo (v. 3): <u>https://www.skao.int/en/science-users/ska-tools/494/ska-staged-delivery-array-assemblies-and-subarrays</u>
- Software interface to the antenna coordinates.
- SKAO repository: <u>https://gitlab.com/ska-</u> telescope/ost/ska-ost-array-config
- Detailed documentation in a Jupyter notebook.
- Allows you to
 - Configure a custom subarray.
 - Simulate interferometric observations.
 - Plot array layout and *uv* coverage.
 - Export the layout to CASA for more comprehensive simulations.
- Figure on the right plots baseline distribution and uv coverage of two Mid subarrays.

SKAO construction activities are proceeding at pace; SKAO science is now clearly on the horizon. It is therefore time for detailed operational planning provided by 'year in the life'!

The SKA is a flexible science machine

- SKA systems are hugely flexible!
- Two telescopes to cover a frequency range between 50 MHz and 15.4 GHz.
- Each supports up to 16 subarrays (splitting the 307 stations and 144 dishes into smaller arrays).
- Very flexible Correlator Beamformers (CBFs), but ultimately resource limited.
- Both imaging and non-imaging modes: broadband continuum, spectral/zoom modes, pulsar and fast transient search (PSS), pulsar timing (PST), dynamic spectrum, flowthrough, VLBI.
- Commensality supported (data, observing, multiplexed).

Slide / 13

We will deliver data products

Credit: I. Heywood, SARAO (2022, ApJ, 925, 165) MeerKAT 1.28-GHz Galactic Centre mosaic

 \rightarrow Even more operational challenges

• Our data are **BIG**; expecting to deliver ~700 PB/year of data products.

- Don't need to be a radio expert to access the SKA!
- Transformational science increasingly relies on multiwavelength data;

everyone is welcome!

 Data products delivered to users by SRCNet (e.g. AusSRC: https://aussrc.org/).

SKAO Operational model (brief summary)

- aren't yet available).

Details in the Observatory Establishment and Delivery Plan: <u>https://www.skao.int/en/resources/402/key-documents</u> **SKAO science data products:** A summary document lists many of the kinds of data products we are expecting (details of data formats

> appropriate proprietary period (a year? TBD). There is generally no user interaction with the SDP.... BUT sometimes there will be. Large projects may request a small amount of data and tune their User visualises, analyses, imaging parameters etc. creates advanced data products on the SRCNet. Workflow templates. User requested project-level **Observation-level data** data products. Created in the products queued for delivery SRCNet; responsibility of to SRCNet. SKAO.

Relationship between observing modes and data products

Year in the life of SKA-Low and SKA-Mid SKAAO

- What does a year of Operations look like ('standard' year e.g. **Cycle 2)?**
- Covers as much of the system as we can reasonably include.
- How much user support do we expect in a year?
- How many proposals?
- What types of science projects (utilising extensive existing material as a starting point)?
- What is the telescope mode usage?
- What opportunities are there for commensality?
- What are the calibration requirements?
- What kinds of science data products do we expect to deliver and in what proportion? • What would the load on our Science Data Processor (SDP) be?
- What resources are needed in SRCNet?
- Availability for science? Weather, RFI, maintenance.
- Power considerations, e.g. how much time does Mid spend slewing, tracking and scanning?

• Aiming to be representative, not perfect. Can improve as developments occur + feedback from the community.

SKA1 Scientific Use Cases

SKA-TEL-SKO-0000015	Revision 04
Classification:	UNRESTRICTED
Document type:	GDL
Date:	2021-12-07
Status:	RELEASED

What we are finding so far

- This is a substantial amount of work.
- Lots of preparatory work has to be done to enable year in the life planning.
- Aligning visions/plans/understanding!
- Enormously valuable!

Year in the Life of the SKA: **Project Schedule**

SKAO-TEL-0000000 Classification: Document type: Date: Status:

Revision 01 UNRESTRICTED NOT 2024-08-29 DRAFT

Documentation in prep.

We are spending significant time talking to each other and people in other areas.

Science verification

- commissioning, science verification).
- quality assurance and data delivery.
 - supported by workshops.
 - Short description of the idea submitted by astronomers.
 - modes? Appropriate comparison data? -> **Pool of prioritised ideas.**

3

2

Processor (SDP), including a QA assessment.

resources may be made available for analysis.

Report generated to assess the status of the associated observing mode, supported by community assessment.

Final step in the broader delivery of the system (assembly, integration, verification, commissioning, science

• Full end-to-end test 'dress rehearsal', starting with a submitted idea, observation, data product creation,

Call(s) issued to the community for verification ideas to test specific modes and capabilities,

Light-touch assessment: does the idea provide the tests that we need? Do they use the correct

Observations carried out. Data products (e.g. image cubes) created using the Science Data

Data products **delivered publicly** via the SRCNet following an announcement. Some SRCNet

Expected mode availability for early science verification

AA2 mode prioritisation:

- 1. Continuum
- 2. Pulsar timing (PST)
- 3. Pulsar and transient search

Zoom (maybe), VLBI (maybe-ish) Transient buffer (unlikely)

Continuum: 16k channels, 800 MHz (4 x 200 MHz) BW **PST:** \geq 6 beams (steerable) with dedispersion, 800 MHz BW **PSS:** \geq 16 beams (steerable), not fully pipelined, non real-time operation, full BW

Modes only available for science verification once they have successfully passed science commissioning. Continuum and PST likely to be the early focus (AA2).

Preparing for science verification

- Building up complexity of modes/capabilities/data products as we progress from AA2 \rightarrow AA*.
- Expecting to deliver visibilities alongside continuum/spectral data products during science verification.
 - Verification of pipelines.
 - Important for building trust.
- Verification periodically as modes/array mature/grow (even into Cycle 0).
- Released following announcements (observed in 'trickle' + dedicated blocks).

Supported by community workshops.

- Mode availability, tool usage, SKA Regional Centre Network availability and usage.
- Intend to have a memo series, so that e.g. early career researchers can receive technical credit, especially if a dataset doesn't result in publication.

Thank you for listening!

Jess.Broderick@skao.int

https://recruitment.skao.int/vacancies.html https://www.csiro.au/en/careers/careeropportunities/skao

We recognise and acknowledge the Indigenous peoples and cultures that have traditionally lived on the lands on which our facilities are located.

•

٠

igodol

