CTA-pol

Optical Blazar Polarimetry from Australia

Nick Tothill, Western Sydney University

for CTA-Oz

2024-XI-14

A sample result

Astronomer's Telegram 16381, 2023 Dec 15 'First Detection of VHE gamma-ray emission from FSRQ OP 313 with LST-1'

- most distant AGN ($z \approx 1$) detected at VHE ($\geq 100 \text{ GeV}$) gamma-ray energy
- LST-1 is the first stage of the Cherenkov Telescope Array
 - 'Large Size Telescope', 23 m IACT
 - La Palma, Canaries
 - Southern array going to Paranal

Astronomer's Telegram 16360, 2023 Dec 04 'Optical follow-up of the gamma-ray flare of the blazar OP 313 reveals a bright state with high polarization degree'

- DIPOL-1 polarimeter on Sierra Nevada Obs 0.9m telescope
- $\bullet\,$ linear polarisation up to 22%

Blazars

Blazars consitute most of the (known) extragalactic TeV population

- Bright across entire spectrum
- Highly variable
- lots of non-thermal (i.e. synchrotron) emission

Synchrotron emission is strongly polarised, so optical polarisation sees the non-thermal emission well.

Blazars are highly polarised in optical emission.

The CTA Science Programme

- CTA will be a northern and a southern array, seeing blazars over the whole sky.
- The CTA AGN KSP will monitor some blazars, but not all.
- CTA will also expand the TeV blazar population
- Optical polarimetry is important to complement TeV detections of flaring
- Optical polarimetry can spot a flare occuring and generate an alert to CTA
- Programme of blazar monitoring for as many sources as possible with polarimetry (and maybe other stuff).
- N hemisphere is full of small to medium-size telescopes available for monitoring, eg RoboPol (Crete); Liverpool Telescope (Canaries)...
- Plan to site a 1m-class optical telescope with polarimetry on CTA-South site.
- More will be needed, and greater time coverage helps.

3800 h/year = 1.3 FTE

Polarisation – a guide for the forgetful

- Polarisation is a *statistical* property of electromagnetic radiation.
- (forget about circular polarisation linear only)
- *Natural light* (most light in the universe) is unpolarised or (more accurately) randomly polarised

$$\overline{E_x} = \overline{E_y}$$

with propagation along z, averaged over time

• *partially linearly polarised* light

$$\overline{E_x} > \overline{E_y}$$

with degree of polarisation

$$P = \frac{I_x - I_y}{I_x + I_y}$$

 $(I_x \propto E_x^2)$

Polarimetry with incoherent detection

- measure the intensity of light in the two different plane polarisations, calculate *P*
- Wollaston prism splits light into two beams with orthogonal polarisation, so two images
 - unknown polarisation direction
 - differences in brightness caused by other effects
- Use a *half-wave plate* $(\lambda/2)$ or *retarder*: When the plate is rotated by ϕ , the polarisation plane is rotated by 2ϕ .
- Rotate the $\lambda/2$ plate:
 - $\circ~$ one image will be a bit brighter
 - $\circ~$ maximum brightness difference when $\lambda/2$ rotates the polarisation direction with more light onto the Wollaston prism's preferred direction
 - $\circ~$ zero brightness difference when Wollaston prism's preferred direction is $45^\circ~$ from plane of polarisation.
 - sinusoidal change in brightness difference

$\textbf{PICSARR} \rightarrow \textbf{CTA-pol}$

PICSARR is a high-precision stellar polarimeter (Bailey et al., 2023^{*a*}) Design goals: bright stars with very high precision

Fast-rotating retarder; sCMOS camera.

CTApol design goals: faint sources with high polarisation: stepper motor driving retarder; slow steps; higher-performance camera

^ahttps://doi.org/10.1093/mnras/stad271

Design, Fabrication, Testing

- Camera: Andor Marana 11 μ m pixels
- half-wave plate: Bernhard Halle
- wollaston prism: Bernhard Halle quartz 1deg sep
- filters: Chroma SDSS ugriz

Development, testing, commissioning on Western Sydney University Penrith Observatory $0.6\,\mathrm{m}$ telescope. 1

"IMG20231103133325040.png

¹R-C reflective optics, equatorial mount, cassegrain focus

Initial testing

SOLIDWORKS Educational Product. For Instructional Use Only.

(Courtesy N. Novaretti)

Figure 3: CTA-Pol Attached to WSU 0.6 m Telescop e

Left: a star field (N. Novaretti); Right: comparison of two polarisations (A. Al-khalailah)

Initial results

Combined Visualization for Pair 2 in Image 2

Next steps – Summer 2024–5

Mount stepper-motor/retarder in instrument Drive retarder with stepper motor — JB's board fiducial for retarder — magnetic sensor on stepper Design and fabricate 'stage 1' — WSUPO Design interface structure — ANU

Test observations to fainter stars \rightarrow Test observations brightest blazars

13/16

Next stages

- Commissioning on 2.3m ANU telescope^{*a*}, Siding Spring as visiting instrument.
- Commissioning on other telescopes
- Development and construction of 2nd generation instrument to act as facility instrument integrated with 2.3 m
- Development and construction of a 'CTA-Pol-lite' for other facilities

^{*a*}altaz mount, cassegrain focus under development

Elephants in the Room

- Software polarimetry data collection and analysis
- Software integration with ANU control systems
- Integration with information infrastructure for transients

Funding

LE21 — Funding for construction of CTA-Pol; ends October 2025 LE25 — Funding for further development of CTA-Pol; 2025–2029 **Funded!**

CTA-Oz and CTApol

