Multi-instrument fitting with Gammapy

- * Frequently, one needs to fit data from multiple instruments together
 - Broadband SED modelling
 - * Fermi-LAT + IACT modelling
 - * Multiple IACTs
- Traditionally:
 - * Extract flux points ("DL5"), fit fluxes from different instruments
 - Cons: •
 - Cannot take instrumental systematics into account
 - Dependence on how fluxes were extracted
 - * Difficult to take upper limits into account

Abdo et al, 2011

Joint likelihood

- Simultaneous fitting of various
- Likelihood evaluated per dataset, individual likelihoods combined to get global likelihood

Lon

True Energy

Flux

- May come from the same or different instruments
- Possible to combine DL4 and DL5 data

Multi instrument analysis

- * A Spectral Fit combining different types of data
 - * Fermi-LAT DL4 data full 3D analysis, 7yrs of data
 - * MAGIC DL3 data point like 1D spectral analysis 40 mins of data
 - * VERITAS DL3 data point like 1D spectral analysis 40 mins of data
 - * FACT point like 1D spectral analysis, 10.3 hrs of data
 - * H.E.S.S. full containment 3D analysis, 2 hrs of data

Better constrain on parameters

https://arxiv.org/pdf/1903.06621

Instrumental systematics

* A modified likelihood with systematics on the energy scale * Directly obtain statistical error on the parameters $\frac{\mathrm{d}\tilde{\phi}}{\mathrm{d}\tilde{E}} = \frac{\mathrm{d}\phi}{\mathrm{d}E}\frac{\mathrm{d}E}{\mathrm{d}\tilde{E}} = \phi_0 \left(\frac{E/(1+z)}{E_0}\right)^{-\Gamma+\beta\log_{10}\left(\frac{E/(1+z)}{E_0}\right)} \left(\frac{1}{1+z}\right)$

$$z_i = \frac{\tilde{E} - E}{E} = \frac{\tilde{E}}{E} - 1$$

Constrain extensions

- Joint Fermi-LAT H.E.S.S. analysis used to constrain the extension of the Crab Nebula
 - Probe structures to understand the underlying mechanisms

Directly fit physical models

- * Directly fit physical models to the data
 - In-built gammapy wrapper around naima routines
 - Underlying fitting API for agnpy and JetSet

Analysis of non-pointing instruments Fermi-LAT, HAWC, etc

https://docs.gammapy.org/1.2/tutorials/data/fermi_lat.html#sphx-glr-tutorials-data-fermi-lat-py

https://docs.gammapy.org/1.2/tutorials/data/hawc.html#sphx-glr-tutorials-data-hawc-py

Fermi-LAT with Gammapy

- * Analysis starts from DL4 data levels:
 - * After binning and reproduction
- * Once you have a DL4 product "Dataset", modelling and and fitting proceeds as before
- Bonus: Simulating datasets
- * Note: Fermi-LAT analysis is always 3D

HAWC with Gammapy

- * TLDR: You CAN, but its not straight forward
- * Events: DL3 level
- * IRFs: DL4 level
- * Joint analysis for different fHit bins
- * Background and exposure calculated per transit for a source

* Correct by the number of transits per source computed from the GTIs

X-ray with Gammapy

- X ray data are similar to gamma rays : list of photons + responses
- 1D analysis (spectral only) is almost straightforward
- Prototype analysis for X-ray data from XMM Newton on HESS J1702-420 (<u>https://</u> zenodo.org/records/7092736)
- Ongoing tests for 3D analysis
- Can be extended down to Swift UVOT

Beyond photons... GADF to VODF

ASTRI - Astronomia a Specchi a Technologica Replicante Italiana, (IACT telescope)

CTAO - Cherenkov Telescope Array Observatory (IACT observatory)

FACT - First APD Cherenkov Telescope (IACT telescope)

H.E.S.S. - High Energy Stereoscopic System (IACT Array)

MAGIC - Major Atmospheric Gamma-ray Imaging Cherenkov telescope (IACT array)

VERITAS - Very High Energy Radiation Telescope Array System (IACT array)

Pointing

γ-ray

Fermi-LAT - Large Area Telescope on the Fermi Space Telescope (High-energy Space Observatory)

Slewing γ-ray instruments

Neutrino detectors HAWC - High-Energy Water Cherenkov telescope (WCT)

SWGO - Southern Wide-Field Gamma-Ray Observatory (WCT)

IceCube - Neutrino Observatory

KM3NeT - The Cubic Kilometre Neutrino Telescope (neutrino telescope)

One tool to fit them all (And in the gamma-ray darkness bind them)

Joint fitting with a physical model