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Gamma-ray cosmology
an introduction



Aoraki National Park, New Zealand. 
Credit: chaka160, reddit/itookapicture

The dark night sky
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https://www.reddit.com/r/itookapicture/comments/11lto05/itap_of_the_milky_way_over_aoraki_national_park/
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The dark night sky

You said dark?
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The dark night sky

You said dark?



“Infinity of the sphere of stars” (Halley, 1721) at this link

Credit: Harrison ‘90

The de Chéseaux - Olbers paradox
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Why is the sky not covered by stars / galaxies ?
Riddle from Digges (1576) in his translation of Copernicus’ De revolutionibus

Formulation by de Chéseaux (1744), Olbers (1823):

Φtotal = ∫ dr Φstar x Nstar(r; r+dr), with Φstar ∝ 1 / 4πr2 and Nstar(r; r+dr)  ∝ 4πr2 dr

Φtotal → ∞ in a static unbounded universe (Descartes, Newton)

see The Conversation article at this link
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https://royalsocietypublishing.org/doi/pdf/10.1098/rstl.1720.0006
https://theconversation.com/why-is-the-sky-dark-at-night-the-200-year-history-of-a-question-that-transformed-our-understanding-of-the-universe-206575


Olbers’ paradox: a founding pillar of cosmology
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Modern Cosmology - a Critical Assessment,
M. S. Longair 1993

Quoting Malcolm Longair:

Jonathan Biteau



A modern version of the riddle
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What remains once the foregrounds (nearby trees) have been removed?
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Part I - Baryons and light: where to find them
from the cosmic web to the cosmic energy inventory

Part II - A cosmic history of light emission
from the first stars to the current spectrum of the universe

Part III - The gamma-ray probe
gamma-ray propagation on cosmological scales

Some useful references: Fukugita & Peebles ‘04, Madau & Dickinson ‘14, Pueschel & Biteau ‘21
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https://ui.adsabs.harvard.edu/abs/2004ApJ...616..643F/abstract
https://ui.adsabs.harvard.edu/abs/2014ARA%26A..52..415M/abstract
https://ui.adsabs.harvard.edu/abs/2021arXiv211205952P/abstract
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Distance to the Milky Way largest satellites?

LMC

SMC
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Distance to the closest giant spiral galaxy?
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Our location in the cosmic web
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McCall ‘14 (The Council of Giants)

The Local Sheet
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15Credit: McCall ‘14

The jetted AGN Centaurus A

Zoom on the Local Sheet

Active galaxies in the Local Sheet
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16Credit: McCall ‘14

Starburst galaxies in the Local Sheet

The starburst galaxy  NGC 253 (Credit: Chandra X-ray Center)

The starburst galaxy M 82
(Credit: 
Hubble space telescope
+ Hα from FOCAS)

Zoom on the Local Sheet
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The closest galaxy cluster: the Virgo cluster
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Our location in the cosmic web
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Mei ‘07 (ACS Virgo survey)
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At the center of the Virgo cluster
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Our location in the cosmic web
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Mei ‘07 (ACS Virgo survey)

The jetted AGN M 87
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The closest galaxy cluster: the Virgo cluster and its filaments
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Our location in the cosmic web
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Our supercluster: Laniakea

Hackstein+ ‘18 (Cosmic V-web constrained simulation / CLUES)
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Tully+ ‘14 (Cosmic V-web)
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Our location in the cosmic web
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Exercise 1. Volume filling factor of large-scale structures
Assess the relative volume occupancy of clusters, filaments and sheets
using w = 1 Mpc  and l = 10 Mpc.

Relevant scales

w = 1 Mpc

l =
 1

0 
M

pc

Voids
Sheets

Filaments

Clusters
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Credit: Oei+ ‘22
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Exercise 1. Volume filling factor of large-scale structures
Assess the relative volume occupancy of clusters, filaments and sheets 
using w = 1 Mpc  and l = 10 Mpc.

Relevant scales
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https://doi.org/10.1051/0004-6361/202140364


Nobel in physics 2019
J. Peebles (cosmology)

Credit: Fukujita et Peebles ‘04

23

Cosmic energy inventory
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Credit: Fukujita et Peebles ‘04
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Cosmic energy inventory
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Credit: Fukujita et Peebles ‘04
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Cosmic energy inventory

Credit: Hackstein+ 2018 (Cosmic V-web constrained sim. / CLUES)
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Credit: Fukujita et Peebles ‘04
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Cosmic energy inventory

Credit: Hackstein+ 2018 (Cosmic V-web constrained sim. / CLUES)
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Cosmic energy inventory
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Cosmic energy inventory
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Cosmic energy inventory
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Nearly all our information on 
the universe: 4 messengers
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Cosmic energy inventory
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Part I - Baryons and light: where to find them
from the cosmic web to the cosmic energy inventory

Part II - A cosmic history of light emission
from the first stars to the current spectrum of the universe

Part III - The gamma-ray probe
gamma-ray propagation on cosmological scales

Some useful references: Fukugita & Peebles ‘04, Madau & Dickinson ‘14, Pueschel & Biteau ‘21
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https://ui.adsabs.harvard.edu/abs/2004ApJ...616..643F/abstract
https://ui.adsabs.harvard.edu/abs/2014ARA%26A..52..415M/abstract
https://ui.adsabs.harvard.edu/abs/2021arXiv211205952P/abstract
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Cosmic timeline
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Power source of cosmic emissions: star formation

Jonathan Biteau

Credit: NASA and the Night Sky Network
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Credit: Madau & Dickinson ‘14

Power source of cosmic emissions: star formation

Jonathan Biteau

https://doi.org/10.1051/0004-6361/202140364
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Credit: Madau & Dickinson ‘14

Power source of cosmic emissions: star formation
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https://doi.org/10.1051/0004-6361/202140364


Exercise 2. Cosmic energy density of photons produced by nucleosynthesis

1. Estimate the efficiency of conversion of matter into light, ϵ
⊙
 , within stars similar to the Sun. 

    Its bolometric luminosity is L
⊙
= 3.8 × 1026 W.

2. Discuss the efficiency of this light production compared with that of the pp chain: 
    4p + 2e−→ 4He2+ + 2 𝜈e, 

    which releases 26.1 MeV of energy in the form of photons 
    (and 0.6 MeV in the form of neutrino kinetic energy).

3. From the light-to-matter conversion efficiency in the sun 
    and the star formation rate density, calculate the energy 
    density in the field of photons emitted by all the stars 
    in the universe.

36

Power source of cosmic emissions: star formation
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Power source of cosmic emissions: star formation

star light -> 13 x 10³ eV / m³ 
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M● = (6.5 ± 0.2stat ± 0.7sys) × 109 M

☉
   (EHT Collab. ‘19)

ratio of radiated power 
to rate of mass-energy 
deposition in the disc, 
measured by an 
observer at infinity:

ϵaccr  = 5.7-30.8%

see Thorne, ‘74

Nobel in physics 2019
K. Thorne (GW)
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Power source of cosmic emissions: black hole accretion

Jonathan Biteau

https://en.wikipedia.org/wiki/Solar_mass
https://en.wikipedia.org/wiki/Solar_mass


In color:

Accretion rate x 2000* to match Ѱ
* for a Chabrier initial mass function
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Power source of cosmic emissions: black hole accretion
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In color:

Accretion rate x 2000 to match Ѱ

Exercise 3. Cosmic energy density of photons from accretion

1. What is the fraction of mass energy that can be converted to radiation for a black hole 
    accreting at the rate M for a radiative efficiency 5.7% < ϵaccr  < 30.8% ?

2. Estimate the energy density of photons from matter accreted by massive black holes.

.

40

Power source of cosmic emissions: black hole accretion
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In color:

Accretion rate x 2000 to match Ѱ

Exercise 3. Cosmic energy density of photons from accretion

1. What is the fraction of mass energy that can be converted to radiation for a black hole 
    accreting at the rate M for a radiative efficiency 5.7% < ϵaccr  < 30.8% ?

2. Estimate the energy density of photons from matter accreted by massive black holes.

.
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Power source of cosmic emissions: black hole accretion

accretion light -> 1.5 x 10³ eV / m³ 

Jonathan Biteau



The energy density u of an isotropic field of relativistic particles is linked to its bolometric intensity I, i.e. integrated over all 
frequencies, also known as the surface brightness, in W m−2 sr−1 or eV s−1 m−2 sr−1:

We can also define the specific intensity I𝜈 of an isotropic relativistic particle field, i.e. its intensity per unit frequency:

We often plot 𝜈I𝜈  as a function of ln(𝜈) or log10(𝜈), the integral of which gives the bolometric intensity:

Brightness of the sky

42Jonathan Biteau
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The spectrum of the universe

Jonathan Biteau



CMB: cosmic microwave background

THE black body at T0 = 2.7 K, discovered in 1964.

emitted at T = 3000 K during decoupling
between photons and matter (t = 370,000 ans).
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Nobel in physics 1978
A. Penzias & R. Wilson (CMB)
P. L. Kapista (low-T physics)

Nobel in physics 2006
J. C. Mather & G. F. Smoot

Planck 2013

Shaw in astronomy 2010
C. L. Bennet, L. A. Page, D. N. Spergel 

0.26 MeV / m³

The spectrum of the universe
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CIB, COB: cosmic infrared 
        and optical backgrounds

CIB discovered in 1996.

Emitted since reionization ( t ≳ 0.5 Gyr) 
by all stars and galaxies
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Shaw in astronomy 2018
J. L. Puget (CIB)

15.5 ± 1.0 keV / m³
   Matches our estimate of
   star light          13 keV / m³ 
+ accretion light  1.5 keV / m³ 

The spectrum of the universe

Jonathan Biteau



CRB, CXB: cosmic radio and X-ray 
                    backgrounds

CXB discovered in 1962.

Radiation of the electrons accelerated 
in the winds of starforming and active galaxies
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Nobel in physics 2002
R. Giacconi (CXB)

70 ± 10 eV / m³
About ~5% of
accretion light 
(1500 eV / m³ )

The spectrum of the universe

Jonathan Biteau



CGB: cosmic gamma-ray background
CGB discovered en 1977.

Radiation of the electrons accelerated in
jetted active galactic nuclei
around supermassive black holes
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Shaw in astronomy 2020
R. D. Blandford (active galactic nuclei)

5 ± 1 eV / m³   Matches our estimate of
light from jets: 3 eV / m³ 

The spectrum of the universe

Jonathan Biteau



ENB: extragalactic neutrino
background

ENB discovered in 2013.

To date, no source detected 
at the 5σ level…

But exciting pieces of evidence!
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50 ± 10 meV / m³

  1%  

The spectrum of the universe

Jonathan Biteau



Other neutrino backgrounds
Not detected

● CNB: cosmic neutrino background
emitted at t ∼ 1 s

● DSNB: diffuse supernova
      background

● Cosmogenic neutrinos, 
from the propagation of 
ultra-high energy cosmic rays

49

The spectrum of the universe

Jonathan Biteau



ECRB: extragalactic cosmic ray 
            background

Discovered in 1962.

Extremely low flux: 
1 per year per km2 over 4ⲡ
above the ankle at 5 EeV.

Dipole in the sky firmly
detected but no source 
identified (yet!)
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13 ± 4 meV / m³

The spectrum of the universe

Jonathan Biteau



Synthesis models of all galaxies

51
Solution to Olbers’ paradox: 
finite history of star formation (limited forest)



Part I - Baryons and light: where to find them
from the cosmic web to the cosmic energy inventory

Part II - A cosmic history of light emission
from the first stars to the current spectrum of the universe

Part III - The gamma-ray probe
gamma-ray propagation on cosmological scales

Some useful references: Fukugita & Peebles ‘04, Madau & Dickinson ‘14, Pueschel & Biteau ‘21
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https://ui.adsabs.harvard.edu/abs/2004ApJ...616..643F/abstract
https://ui.adsabs.harvard.edu/abs/2014ARA%26A..52..415M/abstract
https://ui.adsabs.harvard.edu/abs/2021arXiv211205952P/abstract


Contaminants in the O/IR
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Credit: L. Gréaux
Adapted from Leinert ‘97 & JB ‘23

Zodiacal light, integrated star light, diffuse galactic light (cirrus)1

@ 0.55 µm

Credit: Lasue 2020

Jonathan Biteau



54Jonathan BiteauCrédit : ESA/Webb, NASA & CSA, A. Martel.

Integrated galaxy light (galaxy counts) 

Windhorst+ ‘23
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p + γ(CIB/CMB)→ p/n + π (or p + e+/-)
→ 2mp mπ / 4EEBL/CMB ~ 50 EeV x (λCMB / CIB / 1000 μm)

γ + γ(COB/CIB) → e+ e-

→ (2me)² / 4EEBL/CMB  ~ 1 TeV x (λCIB / COB / 1 μm)

Credit: 
Dole+ 2006

Credit: 
Hoffman+ 2009

Cosmic propagation of TeV gamma rays and EeV cosmic rays

Jonathan Biteau



Ɣ-ray propagation from sources down to Earth

56Credit: Biteau & Meyer ‘22



Ɣ-ray propagation from sources down to Earth
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1 TeV

1 µm

Credit: Biteau & Meyer ‘22



TeV gamma-ray suppression

where the optical depth τ is the integral of the interaction rate (inverse mean free path Γ) 
over light travel time (light travel distance L):

TeV ɣ-ray flux suppression
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EBL photons

e+/e-

TeV photons

Credit: L Gréaux

Jonathan Biteau



TeV gamma-ray suppression

where the optical depth τ is the integral of the interaction rate (inverse mean free path Γ) 
over light travel time (light travel distance L):

Light travel distance given by ΛCDM model

Mean free path given by EBL photon density and Breit-Wheeler cross section (ɣɣ→e+e-)

integrated over comoving EBL photon energy ϵ and photon-gamma angle 𝜃, with  

TeV ɣ-ray flux suppression

59Jonathan Biteau



TeV gamma-ray suppression

with

TeV ɣ-ray flux suppression
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EBL photons

e+/e-

TeV photons

Jonathan Biteau

Credit: L Gréaux



TeV ɣ-ray flux suppression
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How do I account for it?

62Jonathan Biteau

GammaPy tutorial at this link

https://docs.gammapy.org/1.2/user-guide/model-gallery/spectral/plot_absorbed.html


TeV gamma-ray suppression

with

Gréaux & JB, in prep

TeV ɣ-ray flux suppression
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EBL photons

e+/e-

TeV photons

 Fermi-LAT 
(GeV range)

HESS, MAGIC, VERITAS 
(TeV range)

Jonathan Biteau

Credit: L Gréaux



New ɣ-ray reconstruction of the COB and CIB
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Credit: Gréaux & JB, in prep

Jonathan Biteau

Combining the info from hundreds of 

TeV spectra from HESS/MAGIC/VERITAS

HESS, MAGIC, 
VERITAS



New ɣ-ray reconstruction of the COB and CIB
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Credit: Gréaux & JB, in prep

Jonathan Biteau

Good match: probe of H0

as τɣɣ ∝ IEBL x c / H0= (1+fdiff) x IIGL x c / H0

New 
Horizons

Hubble

HESS, MAGIC, 
VERITAS



Ɣ-ray propagation from sources down to Earth
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1 TeV

1 µm

0.5 TeV

1 mm
1 GeV

Credit: Biteau & Meyer ‘22



Absence of secondary signal
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Credit: Neronov & Vovk 2010

Credit: Biteau+ 2020

Discovery of extreme TeV blazars in 2006
Hard TeV photon spectrum when corrected for absorption 

Intrinsic emission expected to be faint in the GeV band

Reprocessed emission? 
None in 2010 within point spread function

⇒ minimum B-field needed to spread out the signal

Jonathan Biteau



Magnetic fields in voids
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1ES 0229+200 (z=0.14) up to Ecut = 10 TeV,
50h of CTAO-North to reach 5σ

Credit: CTA Consortium 2021

Primordial origin simulation
B(void) < 1 nG

Astrophysical origin simulation
B(void) < 1 pG

Credit: Hackstein+ 2018

In practice… largely unknown!

Status and expectations 
Current-generation (GeV+TeV - TeV extension): B > 10-100 fG

5σ CTA-discovery potential up to 300 fG

Jonathan Biteau



Alternative cooling  
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Credit: Alves-Batista & Saveliev 2021

Plasma instabilities faster than inverse Compton? Energy-loss? Diffusion?

Jonathan Biteau



Ɣ-ray propagation from sources down to Earth
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1 TeV

1 µm

Credit: Biteau & Meyer ‘22



Open questions: fundamental physics
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Dark matter: what is that? Theories beyond QFT and GR: is there anything to observe?
・Top-down processes (heavy axion-like particles /*or WIMPs*/): decay /*or self annihilation*/ into photons

・Mixing with light axion-like particles (ALP): CTAO starts probing ALP dark-matter parameter space (CTA 2021)

・LIV linearly modified dispersion relation (CPT-odd): Planck scale ~excluded by spectra & Δt! 
probed by gamma-ray propagation

Jonathan Biteau



Credit: JB & M. Meyer for the CTAO Consortium 

All optical light
in the universe!

Plasma and B-fields
in cosmic voids?

Quantum gravity
at test?

Super-light dark-matter
candidates?

Conclusion: Ɣ-ray cosmology with CTAO
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Backup
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?

III. Multi-messenger emissions on cosmic scales
2. The spectrum of the universe



Power source #1: Star formation
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Light-weight long-lived stars
Credit: Gemini Obs./AURA/Cook

Massive short-lived stars
Credit: NASA/ESA/Bacon (STScI)Adapted from 

C. Harrison’s
thesis (2014)

½ m(π⁰)c²

Lbol ~ 1044 erg/s

http://etheses.dur.ac.uk/10744/


Power source #1: Star formation
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Power source #2: Supermassive black-hole accretion
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Non-jetted AGN
Credit: NASA/JPL-Caltech

Lbol ~ 1045 erg/s



Power source #3: Supermassive black-hole ejection
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Jetted AGN
Credit: ESA/NASA/AVO/Padovani

Lbol ~ 1046 erg/s



In some galaxies: star-formation + black-hole activity!
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II. Cosmic-scale engines behind astrophysical emissions
3. Ejection

Non-jetted AGN  → 90%
Credit: NASA/JPL-Caltech

Jetted AGN → 10%
Credit: ESA/NASA/AVO/Padovani
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II. Cosmic-scale engines behind astrophysical emissions
3. Ejection

Radio

X-rays

Optical

Mass-energy from 
accretion injected into 
jet kinetic energy 
~ 0.5%

See Merloni & Heinz, ‘08

Jet kinetic energy to 
radiation ~ 10%

for active galactic nuclei, 
gamma-ray bursts, 

microquasars 
(see next course)Galaxy cluster

MS 0735.6+7421 81



II. Cosmic-scale engines behind astrophysical emissions
2. Ejection

Exercise 4. Cosmic energy density of photons from jets

1. Estimate the energy density of photons from jets emitted in the vicinity of massive black holes.



The models and the gamma-ray technique 
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Credit: Pueschel & JB 2021

J. Biteau

Models of the COB + CIB (= extragalactic background light, EBL)
・Empirical models: extrapolate on local data here Dominguez +11
・Phenomenological models: SFR + population synthesis here Finke+ 10
・Semi-analytic models: N-body simulations here Gilmore+ 12 



The models and the gamma-ray technique 

84J. Biteau

Models of the COB + CIB (= extragalactic background light, EBL)
・Empirical models: extrapolate on local data here Franceschini +17
・Phenomenological models: SFR + population synthesis here Andrews+ 17
・Semi-analytic models: N-body simulations here Gilmore+ 12 



Multi-wavelength and multi-messenger constraints
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Credit: Neronov+ 2021+ Bray & Scaife 2018 (UHECR)

Mrk 501 (z=0.03) up to Ecut = 100 TeV,
350h of CTAO-North to reach 5σ

Credit: R. Alves-Batista in Pueschel & JB 2021 + Bray & Scaife 2018 (UHECR)

UHECR 
dipole

> 8 EeV

UHECR
dipole

> 8 EeV

CTA 5σ reach
in 50 hours CTA 5σ reach

in 50 hours



Hubble constant
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How to:

Credit: Pueschel & JB 2021

J. Biteau



Missing baryons

87J. Biteau

Credit: Driver 2022



Lorentz invariance violation: status

88

Credit: H. Martinez-Huerta
in Pueschel & JB 2021

J. Biteau


