Gamma-ray cosmology *an introduction*

2024.06.20, CTAO School, Bertinoro Jonathan Biteau

You said dark?

. .

You said dark?

 \Box

The de Chéseaux - Olbers paradox

see The Conversation article at [this link](https://theconversation.com/why-is-the-sky-dark-at-night-the-200-year-history-of-a-question-that-transformed-our-understanding-of-the-universe-206575)

Why is the sky not covered by stars / galaxies ?

Riddle from Digges (1576) in his translation of Copernicus' *De revolutionibus* **Formulation by de Chéseaux** (1744), **Olbers** (1823):

Φtotal = ∫ dr **Φstar** x **Nstar**(r; r+dr), with **Φstar** ∝ **1 / 4πr²** and **Nstar**(r; r+dr) ∝ **4πr² dr** Φ_{total} → ∞ in a static unbounded universe (Descartes, Newton)

"Infinity of the sphere of stars" (Halley, 1721) at [this link](https://royalsocietypublishing.org/doi/pdf/10.1098/rstl.1720.0006)

Credit: Harrison '90

Quoting Malcolm Longair:

When I began research in radio astronomy as a research student in 1963, my supervisor Dr Peter Scheuer gave me a copy of Sir Hermann Bondi's classic text *Cosmology* to absorb and warned me that

There are only $2\frac{1}{2}$ facts in cosmology.

Fact 1. The sky is dark at night

This is the well-known observation which leads to what is known as Olbers' paradox although the paradox was well known to earlier cosmologists. Sir Hermann in his text Cosmology gives a thought-provoking discussion of the meaning of the paradox (Bondi 1952). The fact that the sky is not as bright as the surface of the Sun provides us with some very general information about the Universe. Probably the most general way of expressing the significance of this observation is that the Universe must, in some sense, be far from equilibrium although in what way it is in disequilibrium cannot be deduced from this very simple observation.

Modern Cosmology - a Critical Assessment, M. S. Longair 1993

Fact 2. The galaxies are receding from each other as expected in a uniform expansion

This was Hubble's great discovery of 1929 and I will say much more about it in a moment. The $2\frac{1}{2}$ th fact was as follows:

Fact $2\frac{1}{2}$. The contents of the Universe have probably changed as the Universe grows older

The reason for the ambiguous status of this fact was that the evidence for the evolution of extragalactic radio sources as the Universe grows older was then a matter of considerable controversy, particularly with the proponents of Steady-State cosmology. I was plunged straight into this debate as soon as I began my research programme with Martin Ryle and Peter Scheuer. As we will see, this is no longer a controversial issue – there is no question at all

What remains once the foregrounds (nearby trees) have been removed?

Part I - Baryons and light: where to find them from the cosmic web to the cosmic energy inventory **Part II - A cosmic history of light emission** from the first stars to the current spectrum of the universe **Part III - The gamma-ray probe** gamma-ray propagation on cosmological scales

Some useful references: [Fukugita & Peebles '04,](https://ui.adsabs.harvard.edu/abs/2004ApJ...616..643F/abstract) [Madau & Dickinson '14,](https://ui.adsabs.harvard.edu/abs/2014ARA%26A..52..415M/abstract) [Pueschel & Biteau '21](https://ui.adsabs.harvard.edu/abs/2021arXiv211205952P/abstract)

Part I - Baryons and light: where to find them from the cosmic web to the cosmic energy inventory **Part II - A cosmic history of light emission** from the first stars to the current spectrum of the universe **Part III - The gamma-ray probe** gamma-ray propagation on cosmological scales

Some useful references: [Fukugita & Peebles '04,](https://ui.adsabs.harvard.edu/abs/2004ApJ...616..643F/abstract) [Madau & Dickinson '14,](https://ui.adsabs.harvard.edu/abs/2014ARA%26A..52..415M/abstract) [Pueschel & Biteau '21](https://ui.adsabs.harvard.edu/abs/2021arXiv211205952P/abstract)

Distance to the Milky Way largest satellites?

Distance to the closest giant spiral galaxy?

Active galaxies in the Local Sheet

The jetted AGN Centaurus A

Starburst galaxies in the Local Sheet

The starburst galaxy M 82 (Credit: Hubble space telescope + Hα from FOCAS)

The starburst galaxy NGC 253 (Credit: Chandra X-ray Center)

Our supercluster: Laniakea

Jonathan Biteau

Relevant scales

Exercise 1. Volume filling factor of large-scale structures

Assess the relative volume occupancy of clusters, filaments and sheets using $w = 1$ Mpc and $l = 10$ Mpc.

Credit: [Oei+ '22](https://doi.org/10.1051/0004-6361/202140364)

Credit: Fukujita et Peebles '04

Nobel in physics 2019 J. Peebles (cosmology)

$$
u_c = \rho_c c^2 = \frac{3H^2}{8\pi G}c^2
$$

$$
u_c \approx 4.8 \,\text{GeV m}^{-3}
$$

Credit: Fukujita et Peebles '04

Credit: Fukujita et Peebles '04 \Box all the rest (0.007) $=$ $\frac{1}{1}$ and $\frac{1}{1}$ and $\frac{1}{1}$ dark energy warm intergalactic
plasma (0.04) ala alala
Tista (0.70) dark matter (0.25)

Credit: Hackstein+ 2018 (Cosmic V-web constrained sim. / CLUES) Jonathan Biteau

Credit: Fukujita et Peebles '04

Chart by Markus Pössel [www.haus-der-astronomie.de] - Published under CC BY-NC-SA 3.0 Data from M. Fukugita & P.J.E. Peebles, "The Cosmic Energy Inventory" (2004) [adsabs.harvard.edu/abs/2004ApJ...616..643F]
Chart style following Randall Munroe's xkcd.com/radiation **29 Server Server School School** Chart Sty Chart style following Randall Munroe's xkcd.com/radiation

Chart by Markus Pössel [www.haus-der-astronomie.de] - Published under CC BY-NC-SA 3.0 Data from M. Fukugita & P.J.E. Peebles, "The Cosmic Energy Inventory" (2004) [adsabs.harvard.edu/abs/2004ApJ...616..643F] Chart style following Randall Munroe's xkcd.com/radiation Jonathan Biteau

Part I - Baryons and light: where to find them from the cosmic web to the cosmic energy inventory

Part II - A cosmic history of light emission from the first stars to the current spectrum of the universe **Part III - The gamma-ray probe** gamma-ray propagation on cosmological scales

Some useful references: [Fukugita & Peebles '04,](https://ui.adsabs.harvard.edu/abs/2004ApJ...616..643F/abstract) [Madau & Dickinson '14,](https://ui.adsabs.harvard.edu/abs/2014ARA%26A..52..415M/abstract) [Pueschel & Biteau '21](https://ui.adsabs.harvard.edu/abs/2021arXiv211205952P/abstract)

Cosmic timeline

35

Exercise 2. Cosmic energy density of photons produced by nucleosynthesis

- 1. Estimate the efficiency of conversion of matter into light, ϵ_{\circ} , within stars similar to the Sun. Its bolometric luminosity is L_o= 3.8×10^{26} W.
- 2. Discuss the efficiency of this light production compared with that of the pp chain: 4p + 2e[−]→ ⁴He²⁺ + 2 v_e ,

 which releases 26.1 MeV of energy in the form of photons (and 0.6 MeV in the form of neutrino kinetic energy).

3. From the light-to-matter conversion efficiency in the sun and the star formation rate density, calculate the energy density in the field of photons emitted by all the stars in the universe.

Power source of cosmic emissions: star formation

Exercise 2. Cosmic energy density of photons produced by nucleosynthesis

- 1. Estimate the efficiency of conversion of matter into light, ϵ_{\circ} , within stars similar to the Sun. Its bolometric luminosity is L_o= 3.8×10^{26} W.
- 2. Discuss the efficiency of this light production compared with that of the pp chain: 4p + 2e[−]→ ⁴He²⁺ + 2 v_e ,

 which releases 26.1 MeV of energy in the form of photons (and 0.6 MeV in the form of neutrino kinetic energy).

3. From the light-to-matter conversion efficiency in the sun and the star formation rate density, calculate the energy density in the field of photons emitted by all the stars in the universe.

star light -> 13 x 10³ eV / m³

Lookback time (Gyr)

M87 Event Horizon appx. 40 billion km diameter (24.8 billion miles / 277.5 AU)

ratio of radiated power to rate of mass-energy deposition in the disc, measured by an observer at infinity:

 $\epsilon_{\rm accr}$ $= 5.7 - 30.8%$

see Thorne, '74

$$
M_{\bullet} = (6.5 \pm 0.2_{\text{stat}} \pm 0.7_{\text{sys}}) \times 10^9 \, M_{\odot}^{\odot} \, \text{(EHT Collab. '19)}
$$

Exercise 3. Cosmic energy density of photons from accretion

- 1. What is the fraction of mass energy that can be converted to radiation for a black hole . accreting at the rate M for a radiative efficiency 5.7% < $\epsilon_{\rm accr}$ < 30.8% ?
- 2. Estimate the energy density of photons from matter accreted by massive black holes.

Exercise 3. Cosmic energy density of photons from accretion

- 1. What is the fraction of mass energy that can be converted to radiation for a black hole . accreting at the rate M for a radiative efficiency 5.7% < $\epsilon_{\rm accr}$ < 30.8% ?
- 2. Estimate the energy density of photons from matter accreted by massive black holes.

accretion light -> 1.5 x 10³ eV / m³

Brightness of the sky

The **energy density** *u* of an isotropic field of relativistic particles is linked to its **bolometric intensity** *I*, i.e. integrated over all frequencies, also known as the **surface brightness,** in W m−2 sr−1 or eV s−1 m−2 sr−1:

$$
I = \frac{c}{4\pi}u
$$

We can also define the **specific intensity** $I_{_{\cal v}}$ of an isotropic relativistic particle field, i.e. its intensity per unit frequency:

$$
I_{\nu} = \frac{\mathrm{d}I}{\mathrm{d}\nu}
$$

We often plot νl_ν as a function of In(ν) or log $_{10}(\nu)$, the integral of which gives the bolometric intensity:

$$
\int v I_v \, d\ln v = \int v I_v \frac{dv}{v}
$$

$$
= \int I_v \, dv
$$

$$
= I
$$

$$
= \frac{c}{4\pi} u
$$

10^{-12} 10^{-6} 10^{-9} 10^{-3} **CIB, COB: cosmic infrared and optical backgrounds** $10²$ CIB discovered in 1996. **CMB** Emitted since reionization (*t* ≳ 0.5 Gyr) by all stars and galaxies vI_v [nW m⁻² sr⁻¹] **CIB COB** 10^{-2} $0 \mu m - 2 \mu m$ $0.1 - 10 \mu m$ 10^{-4} **15.5 ± 1.0 keV / m³** 10^{-6}

CRB, CXB: cosmic radio and X-ray backgrounds

CXB discovered in 1962.

Radiation of the electrons accelerated in the winds of starforming and active galaxies

Energy, E [MeV]

Jonathan Biteau

Synthesis models of all galaxies

Part I - Baryons and light: where to find them from the cosmic web to the cosmic energy inventory **Part II - A cosmic history of light emission** from the first stars to the current spectrum of the universe **Part III - The gamma-ray probe** gamma-ray propagation on cosmological scales

Some useful references: [Fukugita & Peebles '04,](https://ui.adsabs.harvard.edu/abs/2004ApJ...616..643F/abstract) [Madau & Dickinson '14,](https://ui.adsabs.harvard.edu/abs/2014ARA%26A..52..415M/abstract) [Pueschel & Biteau '21](https://ui.adsabs.harvard.edu/abs/2021arXiv211205952P/abstract)

Zodiacal light, integrated star light, diffuse galactic light (cirrus)¹

Integrated galaxy light (galaxy counts)

Crédit : ESA/Webb, NASA & CSA, A. Martel. 64

Cosmic propagation of TeV gamma rays and EeV cosmic rays

Ɣ-ray propagation from sources down to Earth

Ɣ-ray propagation from sources down to Earth

$$
\textbf{TeV gamma-ray suppression} \hspace{4mm} \Phi_{\textbf{obs}}(E,z) = \Phi_{\textbf{int}}(E) \times e^{-\tau(E,z)}
$$

where the **optical depth τ** is the integral of the interaction rate **(inverse mean free path Γ)** over light travel time **(light travel distance** *L)***:**

$$
\tau(E,z) = \int_0^z \mathrm{d}z' \, \frac{\partial L}{\partial z'} \Gamma_{\gamma\gamma}^{-1}(E(1+z'),z')
$$

$$
\textbf{TeV gamma-ray suppression} \quad \Phi_{\textbf{obs}}(E,z) = \Phi_{\textbf{int}}(E) \times e^{-\tau(E,z)}
$$

where the **optical depth τ** is the integral of the interaction rate **(inverse mean free path Γ)** over light travel time **(light travel distance** *L)***:**

$$
\tau(E, z) = \int_0^z \mathrm{d}z' \, \frac{\partial L}{\partial z'} \Gamma_{\gamma\gamma}^{-1}(E(1+z'), z')
$$

Light travel distance given by ACDM model
$$
\frac{\partial L}{\partial z} = \frac{c}{H_0} \frac{1}{1+z} \frac{1}{\sqrt{\Omega_{\Lambda} + \Omega_m (1+z)^3}}
$$

Mean free path given by **EBL** photon density and Breit-Wheeler cross section (γγ→e⁺e⁻)

$$
\Gamma_{\gamma\gamma}^{-1}(E',z)=\int_0^{+\infty}\mathrm{d}\epsilon\,\frac{\partial n}{\partial\epsilon}\int_{-1}^1\mathrm{d}\mu\,\frac{1-\mu}{2}\sigma_{\gamma\gamma}\Big[E',\epsilon,\mu\Big]
$$

integrated over comoving EBL photon energy ϵ and photon-gamma angle θ , with $\mu = 1 - \cos \theta'$

How do I account for it?

New ɣ-ray reconstruction of the COB and CIB

New ɣ-ray reconstruction of the COB and CIB

Ɣ-ray propagation from sources down to Earth

66

Discovery of extreme TeV blazars in 2006

Hard TeV photon spectrum when corrected for absorption Intrinsic emission expected to be faint in the GeV band

Reprocessed emission?

None in 2010 within point spread function

⇒ **minimum** *B***-field needed to spread out the signal**

Status and expectations

Current-generation (GeV+TeV - TeV extension): *B* > 10-100 fG 5σ CTA-discovery potential up to 300 fG

Alternative cooling

Plasma instabilities faster than inverse Compton? Energy-loss? Diffusion?

Ɣ-ray propagation from sources down to Earth

Open questions: fundamental physics

Dark matter: what is that? Theories beyond QFT and GR: is there anything to observe?

・Top-down processes (*heavy axion-like particles* /*or WIMPs*/): decay /*or self annihilation*/ into photons

- ・Mixing with light axion-like particles (ALP): CTAO starts probing ALP dark-matter parameter space (*CTA* 2021)
- ・LIV linearly modified dispersion relation (CPT-odd): Planck scale ~excluded by spectra & Δt!

probed by gamma-ray propagation

Conclusion: Ɣ-ray cosmology with CTAO

Backup

2024.06.20, CTAO School, Bertinoro Jonathan Biteau

III. Multi-messenger emissions on cosmic scales

2. The spectrum of the universe

Power source #1: Star formation

Power source #1: Star formation

Power source #2: Supermassive black-hole accretion

Power source #3: Supermassive black-hole ejection

In some galaxies: star-formation + black-hole activity!

II. Cosmic-scale engines behind astrophysical emissions *3. Ejection*

Image Credit: The EHT Multi-wavelength Science Working Group; the EHT Collaboration; ALMA (ESO/NAOJ/NRAO); the EVN; the EAVN Collaboration; VLBA (NRAO); the GMVA; the Hubble Space Telescope; the Neil Gehrels Swift Observat the Chandra X-ray Observatory; the Nuclear Spectroscopic Telescope Array; the Fermi-LAT Collaboration; the H.E.S.S collaboration; the MAGIC collaboration; the VERITAS collaboration; NASA and ESA. Composition by J. C. Algab

II. Cosmic-scale engines behind astrophysical emissions *3. Ejection*

Mass-energy from accretion injected into jet kinetic energy $~1$ 0.5% See Merloni & Heinz, '08 Jet kinetic energy to radiation \sim 10% for active galactic nuclei, gamma-ray bursts,

Galaxy cluster (see next course) MS 0735.6+7421

microquasars

II. Cosmic-scale engines behind astrophysical emissions *2. Ejection*

Exercise 4. Cosmic energy density of photons from jets

1. Estimate the energy density of photons from jets emitted in the vicinity of massive black holes.

The models and the gamma-ray technique

J. Biteau

The models and the gamma-ray technique

Models of the COB + CIB (= extragalactic background light, EBL)

J. Biteau 84

Multi-wavelength and multi-messenger constraints

How to:

J. Biteau

Missing baryons

