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[1] History



The electroscope

simple device used to measure the

electric charge of objects;

it works because of the repulsion of

objects of like charge
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How does it work




The problem...

in 1785 Coulomb noted that charged
electroscopes discharge spontaneously;

in 1835 Faraday confirmed Coulomb's
results, using a better insulation system
-> it is not an instrumental problem;

in 1879 Crookes noted that the
discharge time changes with the
pressure of the air -> the discharge is
induced by the ionisation of the air

in 1896 Bequerel discovers

radioactivity




Radioactivity from the Earth




Radioactivity from the Earth
%




Radioactivity from the Earth
%

hypothesis: the Earth's crust contains radioactive isotopes (natural
radioactivity) -> this might be the source of the ionizing radiation needed to
explain the spontaneous discharge of electroscopes.



Father Theodor Wulf on the Tour Eiffel

Idea: if the source of radioactivity is the Earth,
electroscopes should discharge less rapidly when
located far away from it.
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Idea: if the source of radioactivity is the Earth,
electroscopes should discharge less rapidly when
located far away from it.

in 1906-1908 Wulf improves the
electroscope making it a portable instrument;

in 1910 spends his Easter holidays in Paris,
where he brings his electroscopes to measure
the discharge time at the top and at the
bottom of the Eiffel tower, during the day
and during the night (the sun?);
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Father Theodor Wulf on the Tour Eiffel

Idea: if the source of radioactivity is the Earth,
electroscopes should discharge less rapidly when
located far away from it.

in 1906-1908 Wulf improves the
electroscope making it a portable instrument;

in 1910 spends his Easter holidays in Paris,
where he brings his electroscopes to measure
the discharge time at the top and at the
bottom of the Eiffel tower, during the day
and during the night (the sun?);
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though the effect was smaller than expected, Wulf concluded that Earth's
radioactivity remained the most plausible hypothesis




Pacini's (forgotten) experiment

in 1911 Pacini performed measurements on a boat off the coast of Livorno (300 m
from the coast). Measurements were performed on the sea surface (8 m from sea
bottom) and at 3 m of depth.

~20% drop of the ionization rate underwater
-> the ionization radiation comes from the atmosphere and NOT from the Earth!
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in 1911 Pacini performed measurements on a boat off the coast of Livorno (300 m
from the coast). Measurements were performed on the sea surface (8 m from sea
bottom) and at 3 m of depth.

~20% drop of the ionization rate underwater
-> the ionization radiation comes from the atmosphere and NOT from the Earth!

AN

Which is the nature of the ionizing radiation in the atmosphere?




Victor Hess flies on a balloon

Between April and August 1912 Hess performed 7

balloon flights. During the 7th flight he reached an
altitude of 5200 meters.
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Victor Hess flies on a balloon
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balloon flights. During the 7th flight he reached an
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Victor Hess flies on a balloon
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Victor Hess flies on a balloon

Between April and August 1912 Hess performed 7
balloon flights. During the 7th flight he reached an
altitude of 5200 meters.
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[2] What are cosmic rays?



What are Cosmic Rays?

Cosmic rays particles hit the Earth's atmosphere at the rate of about 1000
per square meter per second. They are ionized nuclei - about 90% protons,
9% alpha particles and the rest heavy nuclei - and they are distinguished by
their high energies. Most cosmic rays are relativistic, having energies
comparable or somewhat greater than their masses. A very few of them have
ultrarelativistic energies extending up to 1020 eV (about 20 Joules), eleven
order of magnitudes greater than the equivalent rest mass energy of a
proton. The fundamental question of cosmic ray physics is, "Where do they
come from?” and in particular, "How are they accelerated to such high
energies?”.

T. Gaisser "Cosmic Rays and Particle Physics"

Also electrons are present in the cosmic radiation -> ~ 1%



Solar modulation
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Solar modulation
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Solar modulation
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Solar modulation

102 E | I T T TTTI | | IIIIII| |
10 &
!T> e
v 1 & oY
— vV A
= : K
I&(/_), B -
vV as
T O.]. E_ Vv ‘‘‘‘‘‘
7)) m MG
v B ‘
= B A VOYAGER 1 v VOYAGER 2
— 0.01 &N
&= e PAMELA 09 o AMS—02 12 e BESS—TeV 02
" = STEREO 08 = BESS 98 = BESS 00
10-3 =3
C 4 BESS 97 s IMAX 92 s MASS 89
~ v IMP8 77 v IMP8 87 v IMP5 69
10_4 == | | IIIIII| | | IIIIII| | | IIIIII| | | IIIIII|
1 10 100 103 104 105

E [MeV]  Gabici 2022 (adapted from Vos & Potgieter 2015)



Solar modulation
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to arbitrarily small E's as a
power law in kinetic energy
(if you were not sleeping during |
 Elena’s class you should know a |

L possible way out).
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Voyager probes

September 5 1977 |
the launch of Voyager 1|

=3-

August 20 1977 launch of the twin pr'oe Vager' 2|



Voyager probes

crossed the heliopause
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An epic journey

V1 HET 2 PENH (daily average rate)
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Gabici 2022 (adapted from Vos & Potgieter 2015)

The local interstellar spectrum of CRs
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Spectra of nuclei

Helium | Voyager 1|
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Electron spectrum in the local ISM

10*

Electrons
10°

I lllllll ‘\ UL

| Voyager 1]

10t F 3 F 3
~ g - E Protons ]
q) - = — —
= i i : i
“10°
Q S
QO -
v »
N i
\8/10-l = 1
' }‘
. IEEEREEEEE Potgieter et al. '15 . '
10° Strong et al. 11 (=1.6 inj) \'

. |p & Axford '85 LB mod o
— — — Langner et al. '01 Polor
10—3 ''''' Webber & Higbie '08 IS7
Voyager 1 (This work)
O AMS (Aguilar et al, "14)

I llllllll

) .-
4
W‘"‘M
L llllllll

T lllll'll
8
C

1 llllllll L L Ll ll | llllllll 1 lllllul 1 llllll?|

107! 10° 10" 10° 10° 10* 107" 10° 10! 102 10° 10*
Cummings+ 2016 Energy (MeV) Energy (MeV)

10-4 Ll lllllll 1 llllllll Ll llllll 1 lllll'll L L LLLLL




10

| flux of particles] = I ]
E 1 E E
) - i
] B -
|~

o ] % 0.1F p .
spectral energy | & = E
. - - < O - —~
distribution > - -
- o — 1072 =
= F :
c - _

By 1073

1 10 10= 103 104 10°
Gabici 2022 E [MeV or MeV/nucl]



;4
]1

| flux of particles

most nuclei have
energies 100 MeV-1 GeV

how many CR electrons?
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"In leaving the (solar system) and
setting sail on the cosmic seas
between the stars, Voyager has

joined the other historic journeys of |
exploration such as the first |
“circumnavigation of the Earth and the |
first footprint on the moon”
" Ed Stone (23/01/1936-09/06/2024) |
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[3] Local or global?



Variations in time and space

CR flux at Earth constant during the last 109 yr
(from radiation damages in geological and biological
samples, meteorites, and lunar rocks)

thus the CR flux must be constant along the orbit
of the Sun around the galactic centre (many

revolutions in a Gyr)
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Variations in time and space

CR flux at Earth constant during the last 109 yr
(from radiation damages in geological and biological
samples, meteorites, and lunar rocks)

thus the CR flux must be constant along the orbit
of the Sun around the galactic centre (many

revolutions in a Gyr)

Stability in time and (hints for) spatial omogenei'ry
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Cosmic rays are almost isotropic
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see review by Mertsch & Ahlers 2017



Cosmic rays are almost isotropic
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Three scenarios
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Hayakawa's test (1952): diffuse emission
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Hayakawa's test (1952): diffuse emission
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Hayakawa's test (1952): diffuse emission
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Hayakawa's test (1952): diffuse emission

NASA'’s Fermi telescope reveals best-ever view of the gamma-ray sky

Credit: NASA/TDOE/Fermi LAT Collaboration
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Diffuse emission in other galaxies
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same CR intensity here (measured) & in the SMC
—> mass of ISM in the SMC is known
—> we can predict the gamma-ray flux from the SMC
—> it should have been detected by EGRET
—> but it was not! (Sreekumar+ 1993)
—> CRs are NOT cosmological
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Diffuse emission in other galaxies
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In fact, MOST CRs are Galactic...

Which CRs are confined in the Galaxy?

->

It depends on the
values of the magnetic
s Sun § 3005 field and thickness of
the halo (both poorly

constrained...)
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Which CRs are confined in the Galaxy?
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the halo (both poorly
constrained...)

B 7 6 kpc h

30 k;ﬂc

v
4

Confinement condition:

R;r <h
v \

Larmor radius halo size



In fact, MOST CRs are Galactic...

Which CRs are confined in the Galaxy?

It depends on the
values of the magnetic
field and thickness of
the halo (both poorly

constrained...)
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Confinement condition:
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Galactic or extra-galactic?
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Galactic or extra-galactic?
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[4] Composition



Composition: striking anomalies
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GCR source / Cosmic (Fe=l)

Composition: volatiles and refractories
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GCR source / Cosmic (Fe=l)
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GCR source / Cosmic (Fe=l)

Composition: volatiles and refractories
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GCR source / Cosmic (Fe=l1)

Composition: volatiles and refractories

elements

‘HiEe | 0 CiNiOo! NeNaMgialisi is|foundindust| i i ipciceiwi: Ln(n(.c As ‘Sc ‘Br Kr RbSrYZr

(o
I

dus’r grains are charged and characterised by a very large Larmor
radius, so they behave as high energy CRs —> they are accelerated |
| more efficiently than gas —> refractories are injected at shocks due |
to sputtering of dust grains —> they are overabundant! |
' (Meyer' Dur'y and Elllsons paper's in ’rhe 90|es)

ﬂ‘
|

VR g 3 - -
[0 JE,,=3Mevm | | i @0 1 0 Zy—————L 1 | | | | O SuperTIGER
T S T S T S elemen’rs ® This work

found in gas

1 2 3 4 5 6 7 8 9 1011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
Atomic number

S — - m—— i

| less pronounced but still very clear duffer'ences
—> volatiles versus refractories? —> dust must play a role... |

Tatischeff, Raymond, Duprat, SG, Recchia, 2021



Composition:isotopic anomalies
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Composition:isotopic anomalies
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Composition:isotopic anomalies
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Summary:
what we have learned from data

B CR intensity is very stable in time (meteorites, lunar rocks, etc)

® CRs are distributed roughly homogeneously in the Galactic disk (gamma rays)

B most CRs are Galactic, at least those with E up to 1017-101° eV (gamma
rays+physics)

B CRs must be deflected (a lot!) by magnetic fields (isotropy)

& CRs carry a lot of energy (same as thermal and magnetic energy of the ISM)

® dust must play a role (composition, refractories/volatiles)

¥ stellar winds must play a role (22Ne/20Ne anomaly)



[5] How long do CRs stay
within the Milky Way?



Composition: striking anomalies

11

6
[—
)

s

10

-
o
)
n
()

e Solar system

9 : :
10 ‘, o Galactic cosmic rays

Atomic abundance, Si = 10
=

| Huge (orders of magnitude) over'abundce

|
| | of light (LiBeB) and sub-iron elements |
10, 5 10 15 20 25 30 35 40

!

Atomic number, Z

Tatischeff & SG, 2018



Composition: striking anomalies

e Solar system

o Galactic cosmic rays

| Huge (orders of magnitude) overabundance ‘
| of light (LiBeB) and sub-iron elements
10 15 20 25 30 35 40

Atomic number, Z

Tatischeff & SG, 2018



Spallation cross sections
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__Spallation cross sections
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Spectra of |lgh‘l’ elements

H slightly steeper than He |
- —> we don’t know why!
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Spectra of light elements
— l H slightly steeper than He |

—> we don't know why!

Possibilities:

1) He does something that H
doesn't —> spallation?
—> is it ok with heavier

o elements?

] : E— 1 2) He and H are accelerated in

ol a different way

—> aren't acceleration

| mechanisms "universal”?

; : 3) He and H are accelerated in
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_ —> fine tuning? (e.g. local
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Spectra of light elements: an hypothesis
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Spectra of light elements: an hypothesis
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Spectra of light elements: an hypothesis
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Spectra of light elements: an hypothesis
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*Local* production rate of B

—> energy per nucleon is approximatively conserved in spallation reactions
—> same energy per nucleon = same velocity
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*Local* production rate of B

—> energy per nucleon is approximatively conserved in spallation reactions
—> same energy per nucleon = same velocity
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The fate of CR Boron nuclei

at this point we need to assume that the local spectra of CRs are
representative for the entire system (which is the Galactic disk as we need
target material for spallation reactions)



The fate of CR Boron nuclei

at this point we need to assume that the local spectra of CRs are
representative for the entire system (which is the Galactic disk as we need
target material for spallation reactions)

Two possibilities:

' escape | TIsm

the CR B leaves
the system




The fate of CR Boron nuclei

at this point we need to assume that the local spectra of CRs are
representative for the entire system (which is the Galactic disk as we need
target material for spallation reactions)

Two possibilities:
the CR B leaves
the system

w o/z ‘
"‘ the CR B spallates

and disappears

| escape |

| spallate |




The equilibrium spectrum of B
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The equilibrium spectrum of B
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Grammage

it is customary to use the grammage instead of the escape time
the grammage has units of g/cm2 and represents the amount of interstellar
mass crossed by CRs before escaping the system
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Grammage

it is customary to use the grammage instead of the escape time
the grammage has units of g/cm2 and represents the amount of interstellar
mass crossed by CRs before escaping the system

X;oy = m Myt
ISM P "H ISM
/

we assume an ISM
made of H only

in a similar way, we can define the grammage needed to get rid of CR Boron
due to spallation

_ ISM
Xp = M,y " vig



The B/C ratio
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The B/C ratio
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The B/C ratio
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The B/C ratio
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The B/C ratio
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Short lived r'adlonucludes 10Be

| shor"r lived r'adlonuclldes of lifetime Trada are pr'oduced in The

spallation of CRs by interstellar matter

’ —

E~ 10 GeV/n — X, = 7 g/lcm® — 7;q,, = 4 Myr

T,.d > T,o —> the radioactive nuclide behaves as stable isotopes

Trud S Toge —> the radioactive nuclide decays before escaping the MW

* remember that in the observer rest frame the lifetime is a factor of y
(Lorentz factor of 1°Be) larger!
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10Be/%Be ratio

/

n('’Be) _ g('°Be)
n(®Be)  q(°Be)

~0.3 —
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10Be/%Be ratio

/

n('’Be) _ g('°Be)
n(®Be)  q(°Be)

~0.3 —

0 note that the the |
PRl {latness of the ratio is |
difficult tobe |
reproduced by |
sophisticated models |
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10Be/%Be ratio
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n(°Be) ~ g(°Be)

10 GeV/n — 7, & 50 Myr > 4 Myr % 74,

Balactic
halo

| the confinement volume >> disk! |
> .r D - ,

e



[6] Diffusive models
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Diffusive models

Galactic d diffusion coefficient I

mean free
path
Ny
D ~ /lv\
300 pc velocity
| # of crossings |
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Cross D ﬂ
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Diffusive models

i B/C constrains a combination of H and D
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Diffusive models
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Let's go back to CR spectra

'4 _pr'imar'ies I

np(E) ~ gp(E) X 7,(E)
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Why is this so remarkable?

;ﬁ CR sources MUST inject: | qP(E) x E 2.2
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Why is this so remarkable?

3( we said NOTHING about the nature of sourcesl
'who they are, where they are, how they accelerate particles etc... this result is very ]
| solid because it is vur‘rually model mdependen‘rl

i —
|

— — ———

local energy
density \

WpVy
W = ——% ~ 10Merg/s

|  Which is also model independentt i




[7] Supernovae and the
origin of cosmic rays




First paper on SNae and CRs

COSMIC RAYS FROM SUPER-NOVAE

By W. BAADE AND F. ZWICKY

MoUNT WILSON OBSERVATORY, CARNEGIE INSTITUTION OF WASHINGTON AND CALI-
FORNIA INSTITUTE OF TECHNOLOGY, PASADENA

Communicated March 19, 1934

A. Introduction.—Two important facts support the view that cosmic
rays are of extragalactic origin, if, for the moment, we disregard the
possibility that the earth may possess a very high and self-renewing
electrostatic potential with respect to interstellar space.

to my knowledge, the first paper invoking Galactic supernovae as sources of CRs is Ter Haar 1950
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3 SN/century in the Galaxy, each one releases
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modern formulation of the hypothesis ,

3 SN/century in the Galaxy, each one releases
105 erg in form of kinetic energy.

Lisn VSN
Wsn = 10*7
>N (105lerg> (3/century> erg/s

a)CRVdisk 41
Wep = ~ 10™ erg/s
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3 SN/century in the Galaxy, each one releases
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The supernova remnant origin of CRs

modern formulation of the hypothesis

3 SN/century in the Galaxy, each one releases
105 erg in form of kinetic energy.

*, why remnants? —> radio observations —> par"rlcle acceler'ahon a'r SNR shocks|

= — ——
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y-rays from SNRs: a test for CR origin

Drury, Aharonian, Volk 1994

51

| 0
”15MN10H1_3¢7 T — Y+
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~ E-22 spectra —> model independent estimate of gamma ray flux! ]
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y-rays from SNRs: a test for CR origin

Drury, Aharonian, Volk 1994
o 51 50
Egy ~ 107" erg — Ecp ~ 107erg Q> p+p—=pt+p+n

0

RXJ1713 (HESS)]
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y-rays from SNRs: a test for CR origin

Drury, Aharonian, Volk 1994
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[8] The three pillars
of orthodoxy



Luke's questions

Luke Drury's brief (and very nice) review (2018)

1. The first is the question of where the energy comes
from which powers the acceleration of the cosmic
rays? In other words, what drives the accelerator?

2. The second is the question of where do the atoms
come from which end up being accelerated? In
other words, what is the source of the matter that
gets fed into the accelerator?

3. And the third and final sense is the question of
where exactly the accelerator is located and how
does it work? In other words, what is the physics?
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Luke's questions

Luke Drury's brief (and very nice) review (2018)

1. The first is the question of where the energy comes
from which powers the acceleration of the cosmic

T

rays? In other words, what drives the accelerator?
2. The second 1is the question of here do the as

other words, what is the source of the matter that
gets fed into the accelerator?

3. And the third and final sense is the question of
wre exactl lat01lcted ‘and how |

; These are actually three d1ﬂ‘erent questlons Wthh re- "
,1' quire different solution methods and answers, and some |
| of the confusion in the field has been due to people not |

arefully distinguishing these concepts.
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The orthodoxy (1)

2 The bulk of the energy of cosmic rays originates

from supernova explosions in the Galactic disk
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The orthodoxy (2)

2 Cosmic rays are diffusively confined within an

extended and magnetised Galactic halo
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The orthodoxy (3)

2 Cosmic rays are accelerated out of the (dusty)
interstellar medium through diffusive shock

acceleration in supernova remnants

. fO"Ow The thSiCSm g
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..and the mass...
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(At least) three serious issues remains
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