LUNCH WITH ZWICKY'S PT1

Michele Doro, University of Padova

[michele.doro@unipd.](mailto:Michele.doro@unipd.it)it

M. Doro - Topics of Fundamental Physics with IACTs - CTA School 2024

1

OUTHINE

Gamma-rays probes of fundamental physics

Dark Matter (pt1)

ALP, PBH, MM, LIV (pt2)

After dinner

M. Doro - Topics of Fundamental Physics with IACTs - CTA School 2024 **2**

OUR GUEST: FRITZ ZWICKY

I have a good idea every two years. Give me a topic, I will give you the idea! [Reputed to have been a remark made to the head of his department at Caltech.1

o Fritz Zwicky (1898-1974) was a Swiss astronomer. He worked most of his life at the California Institute of Technology

Astronomers are spherical bastards. No matter how you look $\frac{1}{2}$ they are just bastards.

**Advances in Very High
Energy Astrophysics**

The Science Program of the Third **Generation IACTs for Exploring Cosmic Gamma Rays**

https://doi.org/10.1142/11141 | October 2024 Pages: 492

Edited by: Reshmi Mukherjee (Columbia University, USA) and Roberta Zanin (Cherenkov Telescope Array Observatory gGmbH, Italy)

FROM OUR COOKBOOK

'Dark matter and fundamental physics with IACTs' [https://arxiv.org/abs/2111.0119](https://arxiv.org/abs/2111.01198)8

> And many other chefs: FG Saturni, G Rodriguez, A Morselli, J Coronado, S. Abe, T Inada, I Batkovic, M. Shoaib, D. Perri, T Kobayashi, G D'Amico, …

#1 GAMMA-RAY PROBES FOR FUNDAMENTAL PHYSICS

Why they are best suited for fundamental physics (and can't possibly do that at CERN)

M. Doro - Topics of Fundamental Physics with IACTs - CTA School 2024

https://doi.org/10.5281/zenodo.2360277

1/ A NEVERENDING POWERFUL ENGINE

o Cosmic rays power up gamma rays

o Immense energy budget, e.g. a GRB can give 10^{53} erg

o Acceleration (and emission) for kyears

M. Doro - Topics of Fundamental Physics with IACTs - CTA School 2024

2/ PARTICLE INJECTION THROUGH GRAVITY

We can use the inevitable gravity infall

- \circ Capture \rightarrow increase cross sections
- \circ Energy budget \rightarrow e.g. around BH, NS, GRB
- o Efficient energy conversion

M. Doro - Topics of Fundamental Physics with IACTs - CTA School 2024 **8**

3/ A HUGE FIDUCIAL VOLUME

- o Signals from CMB and further
- o Direct signal and signal through-Universe
- o There are several 'beam dumps'

M. Doro - Topics of Fundamental Physics with IACTs - CTA School 2024 **10**

GENERATE A GAMMA-RAY

Credit: Fabrizio Tavecchio

3/ TIME OF FLIGHT AND TRACKING

- \circ Astrophysics events have time variability
- o We can trace particle interactions from similar targets at different times
- \circ Check when the Universe was different from now

4/ VARIOUS SENSING SYSTEM

- \circ Cosmic rays \rightarrow but deflected
- \circ Neutrinos \rightarrow but rare
- \circ GW \rightarrow indeed!
- \circ GAMMA-RAYS \rightarrow yes!

#2 IACTS

A great instrumental success

#2 IACTS AND SFDS

HAWC, LHAASO And soon SWGO

15

https://www-zeuthen.desv.de/~iknapp/fs/showerimages.html

IACTS AND SFDS FOR FUND

o Pros

- o Sensitivity at energies not achievable with accelerators
- \circ Multiple targets alike, time varying, multiple phenomena at emission
- Long distance amplify small signals
- $\overline{\mathbf{r}}$ <ns time resolution
- 10% energy resolution
- o (SFDs) wide FOVs, always listening

o Cons

- \circ Need data reduction, risk to miss fun(d)?
- IACTs (know where to point)

THERE'S MORE THAN JUST GAMMAS

o Ample bkg: 1 to 1000 gammas/protons

A LOT OF 'LEFTOVERS'

o **Background events rate**

- ^o One large night: 8h*3600s*200 = 5.76 MEvents
- o **Lifetime: 12 Gevents**
- o In the case of MAGIC **these millions of events are safely stored** in the database
- o What for CTA?

o ß **Is this really trash**? Can there be something peculiar in these leftovers?

THE MENU

- o Dark Matter particles o Axion Like Particles o Magnetic monopoles
- o Primordial black holes o LIV
	- o Quark nuggets
	- \circ Hubble constant \leftarrow J. Biteau
	- o Other DM cases
	- o Tau-neutrinos
	- o Heavier nuclei searches
	- \circ …

We may skip some plates!

20

M. Doro - Topics of Fundamental Physics with IACTs - CTA School 2024

DARK MATTER

Better served cold

M. Doro - Topics of Fundamental Physics with IACTs - CTA School 2024

DISCLAIMER

In the following, PARTICLE DARK MATTER.

- \circ There are theories of modified gravity (MOG) $r^{2+\alpha(E)}$ and Modified Newtonian Dynamics (MOND) motivated (only?) by the fact that particle DM cannot explain well galactic scale gravitation.
- o However, cosmological evidences and the bullet cluster (see later) put seriousy MOND chefs into stress
- o There are even online debates/fights: [https://youtu.be/dEsKnCx32L8?si=SvtPWxavhAHyM28](https://youtu.be/dEsKnCx32L8?si=SvtPWxavhAHyM286)6

Lessons from the Local Group (and beyond) on dark matter

Pavel Kroupa (Bonn)

(Abridged) The existence of exotic dark matter particles outside the standard model of particle physics constitutes a central hypothesis of the current standard model of cosmology (SMoC). Using a wide range of observational data I outline why this hypothesis cannot be correct for the real Universe.

SHORT SELECTION OF REFERENCES

An Introduction to **Particle Dark Matter**

Stefano Profumo

o Book Profumo

o Excellent review:

- o Feng "Dark Matter Candidates from Particle Physics and Methods of Detectio[n" https://inspirehep.net/literature/84776](https://inspirehep.net/literature/847767)7
- o Bertone+ "Particle dark matter: Evidence, candidates and constraints" [https://inspirehep.net/literature/64874](https://inspirehep.net/literature/648746)6
- o History of DM
	- o Bertone+ "History of Dark Matter" [https://inspirehep.net/literature/145922](https://inspirehep.net/literature/1459227)7
- $\overline{\circ}$ Lectures:
	- o Slatyer "TASI Lectur[e" https://inspirehep.net/literature/163076](https://inspirehep.net/literature/1630762)2

BREAK IT, SHAKE IT, MAKE IT

Focus only on Indirect DM detection

24

DIRECT DETECTION EXPERIMENTS

Nuclear recoils: heavy elements (e.g. Ge) Electron recoils:noble gases

Interaction with matter can be

- Spin Independent
- Spin Dependent (different for n,p)

Several signals

DIRECT DETECTION EXPERIMENTS

Cryogenic detectors in underground labs to keep noise down

e.g. Xenon -1 ton at LNGS Italy

26

DIRECT DETECTION EXPERIMENTS

NOT ONLY GAMMA-RAYS

- \circ Neutral particles \leftarrow trace-back origin
	- o **Prompt Gamma-ray**
	- o Reprocessed X-radio
	- o Neutrinos
- o Charged particles: all but most interesting are antiparticles (less background) \leftarrow overall abundances
	- o Positron
	- o Antiprotons
	- o antideuterons

WE HAVE OUR TOOLBOX

Gamma-rays

X-rays

Neutrinos

Charged particles

Cirelli+ 2406.01705

STEPS TO OUR KITCHEN

- o DM evidences
- o Some DM facts
- o IACT observations
- o For your next future

M. Doro - Topics of Fundamental Physics with IACTs - CTA School 2024 **30**

GRAVITATIONAL BALANCE IN GALAXY CLUSTERS

F. Zwicky '30s

 \circ The virial theorem states that for a stable system of discrete particles, bound by conservative forces:

$$
\langle K \rangle = \frac{1}{2} \langle U \rangle
$$

o If you take U grav = GmM/R^2 and $K=1/2$ mv^{λ}2, you obtain

$$
\langle v \rangle \sim \sqrt{\frac{GM_{\rm halo}}{R_{\rm halo}}}
$$

o Zwicky applied this to Coma galaxy cluster assuming 800 galaxies of M=10^9 solar masses in a circle of 10^6 ly and obtaining $\langle v \rangle$ ~80 km/s much smaller than the observed $\lt v >$ ~1000 km/s

"If this would be confirmed, we would get the surprising result that dark matter is present in much greater amount than luminous matter."

"[In order to derive the mass of galaxies from their luminosity] we must know how much dark matter is incorporated in nebulae in the form of cool and cold stars, macroscopic and microscopic solid bodies, and gases."

31

GRAVITATIONAL DYNAMICS IN GALAXIES Vera Cooper Rubin '60s

Observations from 21 cm hy 100 \boldsymbol{V} (km/s) ^{cted} from visible disl^{*} $\overline{50}$ 30 $20₂$ 40 10 R (\times 1000 ly)

- \circ A stable object at orbit r has centripetal acceleration $F =$ mv^2r provided by gravity $F = GM(< r)m/r^2$.
- \circ This translates into $v(r) = \sqrt{\frac{GM(\leq r)^2}{r^2}}$
- o Vera Cooper (Rubin), Bosma (during PhD) made systematic in the 70s studies on motion of stars in galaxies

 \boldsymbol{r}

32

SOMEDARK NUMBERS

Mass TO LIGHT ratio

- \circ A usual way to assess the amount of DM is through the mass-to-light ratio M/L, in units M_Sun/L_Sun
- \circ For the Sun M/L=1, for stars in general M/L<5/10
- For systems of objects where DM is: $M/L~100/1000$

FIG. 6. Time line of local dark matter density measurements. From Read, 2014.

Local DM density 5000 g inside Earth

- o Again by using local stellar motions, local density of 'mass' inferred starting from '20s
- o Latest results by considering large stellar samples and a model for the \texttt{MW}
- Current value 0.3/0.4 GeV cm-3

DM HALO / A NON COLLISIONAL DM SPHERE

$$
\rho(r) \propto 1/r^2
$$
 and $f(v) \propto e^{-v^2/\sigma^2}$.

$$
\nabla^2 \Psi = -4\pi G\rho \longrightarrow \rho(r) = \frac{\sigma^2}{2\pi G r^2}.
$$

 \circ To explain rotation curve, one need a spherical DM halo

o By considering local density and total galactic mass, $Rhalo=100kpc = 10x$ visible

$$
\frac{10^{12} \text{M}_{\text{0}}}{M_{\text{halo}} \sim 4\pi \int_0^{R_{\text{halo}}} dr r^2 \rho(r) \longrightarrow R_{\text{halo}} \sim 100 \text{ kpc}},
$$

o A sphere of self-graviting, noncollision, DM 'gas' would have such a density profile and velocity function

34

 \circ However, infinite mass at growing radii

N-BODY SIMULATIONS

- o DM particles in a starting grid
	- o Gaussian fluctuations
	- o No baryons / collisionless
	- \circ Min mass = $10^4 10^6$ solar masses
- o Huge computing power
- o One obtains
	- o Main halo
	- o Subhalos
	- o filaments

N-BODY SIMULATIONS

 \circ Provide relations M(r), $\overline{\mathrm{N}(\mathrm{M})}, \overline{\mathrm{N}(\mathrm{r})}$ of $\overline{\mathrm{DM}}$ subhaloes required to make the signal model

COLD DARK MATTER

Different free-streaming lengths

N-BODY SIMULATIONS: DENSITY PROFILES

Table 2.1: Plausible spherical density profiles $\rho(r)$ for DM halos in galaxies.

o Cuspy profile: NFW, gNFW, Einasto o Preferred by N-body simulations o Cored profile: isothermal, Burkert o Preferred by observations

GAMMAPY

import darkpipe as dp

In development by S. Abe

from gammapy.astro.darkmatter import (DarkMatterAnnihilationSpectralModel, JFactory, PrimaryFlux,

profiles,

```
\lambda
```
 \mathcal{L}

from gammapy.modeling.models import (

```
TemplateSpatialModel, TemplateSpectralModel, SkyModel,
FoVBackgroundModel, PiecewiseNormSpectralModel
```
Prepare WIMP Models

```
# config for a DM component
channel = 'W'mass = 10*u.TeV
profile = profiles.NFWProfile()
```
$%2f$ ime

```
m = dp. DarkMatterModelGenerator(
    qeom_imaqe = qeom_.to_imaqe(),
    profile = profile,mass = mass,channel = channel,
```
39

 $p =$ profiles. EinastoProfile() p.scale_to_local_density() radii = np.logspace(-3, 2, 100) $*$ u.kpc plt.plot(radii, p(radii), linestyle="solid", linewidth=2.5, label=p. class__. name_

SM PARTICLES CANNOT BE DM, SO, A NEW PARTICLE?

SM particles can account for a tiny fraction of DM

To convince Zwicky models must be natural, non ad-hoc

- you have to invent measurement and instruments! - strong claims requires strong evidences!

WIMP = Weakly-Interacting Massive Particle

SUPER SYMMETRY / WIMP

o Lightest Supersymmet ric particle (LSP) is a 'natural DM candidate o Neutralino, wino, higgsinos are prototype LSP

TWO FLAVOURS

o The particle has been in thermal equilibrium sometimes in the early Universe \rightarrow WIMP, etc

 \circ The particle has NOT been in thermal equilibrium sometimes in the early Universe \rightarrow ALP, PBH, etc

THERMAL RELICS: THE WIMP MIRACLE

o An early phase with total chemical equilibrium, DM \leftrightarrow SM

$$
\frac{dn}{dt}+3Hn=(n_{\rm eq}^2-n^2)\langle\sigma v_{\rm rel}\rangle
$$

o Universe expands, annihilation stops (freeze-out) \sim

$$
dn/dt + 3(\dot{a}/a)n = 0
$$

$$
\Omega_X h^2 \approx 0.12 \left(\frac{2.2 \times 10^{-26} \text{ cm}^3/\text{s}}{\langle \sigma v \rangle} \right) \left(\frac{80}{g_\star} \right)^{1/2} \left(\frac{m_X/T_\text{F}}{23} \right),\tag{44}
$$

THE CMB IMPRINT

- During CMB time Universe is matter dominated
- Recombination: increase of neutral hydrogen
- 100 GeV DM annihilation can ionize roughly 10% of the hydrogen in the universe! So this effect would be very visibile on CMB

Power spectrum of anisotropies due to noncollisional matter

OUR UNIVERSE: THE DM PIE

46

 $~\sim$ 25% of the Universe energy budget in dark matter ~80% of matter has always been dark

BULLET CLUSTER

Non collisional matter is very weakly interacting!

Harvey et al. (2015) report the results on 72 similar merger events and conclude that the existence of particle DM can be established with a significance of more than 7σ.

⁴⁷ [https://youtu.be/rLx_TXhTXb](https://youtu.be/rLx_TXhTXbs)s

SUMMARY

Observational evidence of dark matter (DM)

Evidence has been reported at all scales, but is only astrophysical as of today.

Galactic scales

- Rotation curves of spirals a)
- **Weak lensing** $b)$
- **Velocity dispersions of** C satellite galaxies
- Velocity dispersions in d dSphs

Galaxy clusters scales

- **Velocity dispersions of** $a)$ individual galaxies
- b) Strong and weak lensing
- **Peculiar velocity flows** \mathbf{c}
- X-ray emission d

Cosmological scales

- **CMB** anisotropies $a)$
- **Growth of structure** $b)$

48

- **LSS** distribution c
- d **BAOs**
- SZ effect $e)$

Sanchez Conde

GAMMA-RAY PROBES FOR DARK MATTER

M. Doro - Topics of Fundamental Physics with IACTs - CTA School 2024

GAMMA-RAYS IN EVERY RECIPE

#1 Peculiarity of gamma-ray spectra (no astro-like)

#2 Same signal at different targets

50

#3 Know where to point

G-RAY SIGNAL MODEL

1. How much DM? 2. How much astro?

J-FACTOR

spherical Jeans equation (Binney and Tremaine, 2008):

$$
\frac{1}{n^*(r)}\left\{\frac{d}{dr}\left[n^*(r)\overline{v_r^2}\right]\right\} + 2\beta_{\text{ani}}(r)\frac{\overline{v_r^2}}{r} = -\frac{G}{r^2}\left[M^*(r) + M_{\text{DM}}(r)\right] \simeq -\frac{GM_{\text{DM}}(r)}{r^2},\tag{2.4}
$$

where $n^*(r)$ is the stellar number density, $\overline{v_r^2}$ is the average squared radial velocity and $\beta_{\rm ani}(r)$ = $1-\overline{v_{\theta}^2/\overline{v_r^2}}$ is the velocity anisotropy of the dSph (with $\overline{v_{\theta}^2}$ the average squared tangential velocity).

From dSphs KSP paper in prep

o Inferred with Jeans equilibrium equation o DM halo shape: Nbody/models o Stars trace gravity: need velocity dispersion

- $\operatorname{CLUMPY} \qquad \qquad \circ \text{Main tool: MCMC}$ Jeans analysis of stellar kinematics with CLUMPY
	- o (Charbonnier+ 2012, Bonnivard+ 2016, Hütten+ 2019).

Density radial profiles **J**-factors within angle

 $\rho^2(l,\Omega)dld\Omega.$ $J_{\rm ann}(\Delta\Omega) = \int$

GAMMA-RAYS

Peculiar spectrum:

- Cutoff at DM mass (annihilation) and $\frac{1}{2}$ DM mass (decay)
- Limited confusion with astrophysical sources
- \circ Gamma-yield per annihilation/decay studies with microphysics model
- \circ However, generally speaking, quark hadronization very common: $\pi^0 \rightarrow \gamma \gamma$ and leptonic channels
- \circ We can be pretty model-independent

54

From dSphs KSP paper in prep

PPPC 4 DM ID - A POOR PARTICLE PHYSICIST COOKBOOK FOR DARK MATTER INDIRECT DETECTION http://www.marcocirelli.net/pppc4dmid.html

Available in gammapy with 'gammapy download dataset'. Look for

AtProduction_gammas.dat file

CosmiXs: Cosmic messenger spectra for indirect dark matter searches

Chiara Arina, Mattia Di Mauro, Nicolao Fornengo, Ian Heisig, Adil Jueid, Roberto Ruiz de Austri

The energy spectra of particles produced from dark matter (DM) annihilation or decay are one of the fundamental ingredients to calculate the predicted fluxes of cosmic rays and radiation searched for in indirect DM detection. We revisit the calculation of the source spectra for annihilating and decaying DM using the Vincia shower algorithm in Pythia to include QED and QCD final state radiation and diagrams for the Electroweak (EW) corrections with massive bosons, not present in the default Pythia shower model. We take into account the spin information of the particles during the entire EW shower and the offshell contributions from massive gauge bosons. Furthermore, we perform a dedicated tuning of the Vincia and Pythia parameters to LEP data on the production of pions, photons, and hyperons at the Z resonance and discuss the underlying uncertainties. To enable the use of our results in DM studies, we provide the tabulated source spectra for the most relevant cosmic messenger particles, namely antiprotons, positrons, y rays and the three neutrino flavors. for all the fermionic and bosonic channels and DM masses between 5 GeV and 100 TeV, on this https URL.

39 nages 14 figures 4 tables Comments: Subjects: High Energy Astrophysical Phenomena (astro-ph.HE): High Energy Physics - Phenomenology (hep-ph) Report number: TTK-23-32, CTPU-PTC-23-36 arXiv:2312 01153 [astro-ph HF] Cite as: (or arXiv:2312.01153v1 [astro-ph.HE] for this version) https://doi.org/10.48550/arXiv.2312.01153

- Recently new improved model (especially at high energies) by Arina+ called CosmiXs
- Same format as AtProduction_gammas.dat
- Already implemented in gammapy

Marco Cirelli

GAMMAPY AND PPPC

Import gammapy methods to display DM spectra

from gammapy astro darkmatter import (profiles, JFactory,

PrimaryFlux, DarkMatterAnnihilationSpectralModel,

Add the file manually (or do `gammapy download datasets` PrimaryFlux table filename = "./AtProduction gammas.dat"

To check all available channels fluxes = $PrimaryFlux(mDM="1 TeV", channel="b")$ print(fluxes.allowed_channels)

```
channels = ['b'', 'tau'', 'W'', 'mu'']# and so on
```

```
# zip it for the loop
for mDM, ax in zip(mDMs, axes):
    fluxes.mDM = mDMax.set_time(rf''m$_{\mathrm{DM}}\}) = {mDM}")
   ax.set_yscale("log")
```
for channel, label, linestyle, linewidth, color in $fluxes. channel = channel$ fluxes.table model.plot(energy_bounds= $[mbM / 100, mbM]$, $ax = ax$, label=label, linestyle=linestyle, linewidth=linewidth, color=color, yunits=u.Unit("TeV"), # Must be set sed_type="e2dnde",

A POSSIBLE G-RAY DM SKY FROM WIMPS

FOCUS ON CTA

o KSP/CTAC:

- o Galactic Center JCAP 01 (2021) 057
- \circ LMC Mon. Not. Roy. Astron. Soc. 523 (2023)
- o Perseus Galaxy Cluster 2309.03712
- o dSphs in prep.
- o Friends:
	- o DM lines 2403.04857
	- o Dark subhalos e.g. Phys.Dark Univ. 32 (2021)
	- o Higgsino DM 2405.13104 , Wino DM Phys.Rev.D 103 (2021), Secluded DM Phys.Lett.B 797 (2019)

59

 $O \cdot \ldots$

GALACTIC CENTRE - JCAP 01 (2021) 057

Will be observed with multiple pointings

Figure 1: The left panel shows the exposure map for CTA's Galactic centre (GC) and extended GC surveys, at an energy of 1 TeV. The right panel shows a zoom into the GC survey region. The nine pointing positions of the GC survey mode are marked with red

Backgrounds

Must be computed in gammapy

Figure 3: Background and signal templates computed by ctools for the GC survey observation, showing the expected photon counts in the energy range from 100 to 500 GeV. The (logarithmic) colour code indicates the number of expected counts N per $0.1^{\circ} \times 0.1^{\circ}$ pixel. See text for a description of each of the individual templates shown here.

HINTS OF DM? LST SOUTH!

Found excess in the vicinities of the GC,

Goodenough & Hooper 2009

Compatible with - DM signal at few GeV - 1+ pulsars

- The Galactic Center as a Dark Matter Gamma-Ray Source
- o A.Morselli, A. Lionetto, A. Cesarini, F. Fucito, P. Ullio, Nuclear Physics B 113B (2002) 213-220 [astro-ph/0211327] A.Cesarini, F.Fucito,
A.Lionetto, A.Morselli, P.Ullio Astroparticle Physics 21, 267-285, 2004 [astro-ph

Possible Evidence For Dark Matter Annihilation In The Inner Milky Way From The Fermi Gamma Ray Space Telescope Lisa Goodenough, Dan Hooper arXiv:0910.2998

o Indirect Search for Dark Matter from the center of the Milky Way with the Fermi-Large Area Telescope Vincenzo Vitale, Aldo Morselli, the Fermi/LAT Collaboration

- Proceedings of the 2009 Fermi Symposium, 2-5 November 2009, eConf Proceedings C091122 arXiv:0912.3828 21 Dec 2009
- Search for Dark Matter with Fermi Large Area Telescope: the Galactic Center
	- o V.Vitale, A.Morselli, the Fermi-LAT Collaboration NIM A 630 (2011) 147–150 (Available online 23 June 2010)

Dark Matter Annihilation in The Galactic Center As Seen by the Fermi Gamma Ray Space Telescope Dan Hooper, Lisa Goodenough. (21 March 2011). 21 pp. Phys.Lett. B697 (2011) 412-428

- o Background model systematics for the Fermi GeV excess F.Calore, I. Cholis, C. Weniger JCAP03(2015)038 arXiv:1409.0042v1
- o Fermi–LAT observations of high-energy γ-ray emission toward the galactic centre M. Ajello et al.[Fermi-LAT Coll.] Apj 819:44 2016 arXiv:1511.02938
- o The Fermi galactic center GeV excess and implications for dark matter M. Ajello et al.[Fermi-LAT Coll.] Apj 819:44 2016 arXiv:1511.02938

o Revisiting the Gamma-Ray Galactic Center Excess with Multi-Messenger Observations IC, Zhong, McDermott, Surdutovich, PRD 105, 103023 **61** (2022)

ANNIHILATION OF DM IN THE GC

$\langle \sigma_{\rm ann} v \rangle$ dN dE' $\overline{4\pi}$ $\overline{2m_{\chi}^2}$ Annihilation results for W+W- different channels and Different channels 10^{-24} 10^{-24} $b\bar{b}$ projected mean upper limit projected mean upper limit statistical reach W^+W^- w/o EW corr. 2σ containment 3σ containment $\tau^+\tau^ \left[{\rm cm}^3\,{\rm s}^{-1}\right]$ $\langle \sigma v \rangle_{\rm max}$ [cm³ s⁻¹] 10^{-25} 10^{-25} $\overline{\langle \sigma v \rangle}_{\text{max}}$ (DarkSUS $\frac{1}{2}$ 10⁻²⁶ $\frac{1}{2}$ 10⁻²⁶ signal: Einasto, W^+W^- w/o EW corr. signal: Einasto background: CR + IEM (Gamma) background: CR + IEM (Gamma) 10^{-27} 10^{-27} 10^{3} $10³$ 10^{2} 10^{2} $10⁴$ $10⁴$ 10^5 m_{χ} [GeV] m_{χ} [GeV]

 $10⁵$

 dE'

 $d\Phi^{\rm PP}$

UNCERTAINTIES ON DM AND ASTRO

Limits strongly affected by signal model And backgrounds models

IN COMPARISON

- Stronger than HESS and entering deep into the thermal value
- Stronger than Fermi-LAT > 400 GeV

 $\begin{bmatrix} -1 \\ 6 \\ 2 \end{bmatrix} 10^{-25}$
 $\begin{bmatrix} \frac{8}{10} \\ 10^{-26} \\ 10^{-26} \end{bmatrix}$ CTA GC projection, this work HESS GC Fermi dSphs $(6 \text{ years}) + \text{MAGIC}$ Segue 1 10^{-27} signal: Einasto, $b\bar{b}$ Fermi dSphs $(18 \text{ years}) + \text{LSST}$, projection $\frac{1}{10^3}$ 10^2 10^{4} 10^{5} 10^{1} m_{χ} [GeV]

- From above SWGO may rule!

#3.2 DWARF SPHEROIDAL GALAXIES

- Gravitationally bound to MW halo
- Pressure supported system
- DM density given by velocity dispersion (Jeans equation)

- Size, concentration and metallicity different than
- Mass to light ratio \sim 100/1000 that of Sun
- Clean targets: no astrophysical background

[https://arxiv.org/abs/2311.10](https://arxiv.org/abs/2311.10147)147

velocity dispersion : Issue with stellar association…very few candidates

#3.2 THE DWARF MW GALAXIES

Hutten+ Galaxies 10 (2022) 5

MD+ 2111.01198

			Dwarf Satellite Galaxies		
Draco	2003	7.4	Whipple	Ann.	Wood et al. (2008)
	2007	7.8	MAGIC [†]	Ann.	Albert et al. (2008b)
	2007	(18.4)	VERITAS	Ann.	Acciari et al. (2010)
	$2007 - 2013$	(49.8)		Ann.	Archambault et al.
					(2017)
	$2007 - 2018$	114		$\overline{}$	Kelley-Hoskins (2018)
	2018	52.6	MAGIC	Ann.	Maggio et al. (2021)
Ursa Minor	2003	7.9	Whipple	Ann.	Wood et al. (2008)
	2007	(18.9)	VERITAS	Ann.	Acciari et al. (2010)
	$2007 - 2013$	(60.4)		Ann.	Archambault al. et
					(2017)
	$2007 - 2018$	161			Kelley-Hoskins (2018)
Sagittarius	2006	(11.0)	H.E.S.S.	Ann.	Aharonian et al. (2008)
	$2006 - 2012$	90		Ann.	Abramowski et al. (2014)
	$2006 - 2012$	(85.5)		Ann.	Abdalla et al. (2018a)
Canis Major	2006	9.6	H.E.S.S.	Ann.	Aharonian et al. (2009a)
Willman 1	$2007 - 2008$	13.7	VERITAS	Ann.	Acciari et al. (2010)
		(13.6)		Ann.	Archambault et al.
					(2017)
	2008	15.5	$\rm MAGIC^{\ddagger}$	Ann.	Aliu et al. (2009)
Sculptor	2008	(11.8)	H.E.S.S.	Ann.	Abramowski et al. (2011)
				Ann.	Abdalla et al. (2018a)
	$2008 - 2009$	12.5		Ann.	Abramowski et al. (2014)
Carina	$2008 - 2009$	(14.8)	H.E.S.S.	Ann.	Abramowski et al. (2011)
	$2008 - 2009$ anno ansa	(12.7) nn n		Ann.	Abramowski et al. (2014) 1/0010
Table 8.1 – continued from previous page					
Target	Year	$\bf Time\left[h\right]$	IACT	Limit	Ref.
Segue 1	$2008 - 2009$	29.4	$\rm MAGIC^{\ddagger}$	Ann.	Aleksić et al. (2011)
	$2010 - 2011$	(47.8)	VERITAS	$A.+D.$	Aliu et al. (2012)
	$2010 - 2013$	(92.0)		Ann.	Archambault al. et
	$2010 - 2013$	157.9	MAGIC	$A.+D.$	(2017) Aleksić et al. (2014)
				Ann.	Ahnen et al. (2016b)
	$2010 - 2018$	184	VERITAS	÷	Kelley-Hoskins (2018)
Boötes 1	2009	14.3	VERITAS	Ann.	Acciari et al. (2010)
		(14.0)		Ann.	Archambault al. et
					(2017)
Coma Berenices	$2010 - 2013$	(8.6)	H.E.S.S.	Ann.	Abramowski et al. (2014)
	$2010 - 2013$ ${}< 2018$	10.9 37	VERITAS	Ann. $\overline{}$	Abdalla et al. (2018a)
	2018	50.2	MAGIC	Ann.	Kelley-Hoskins (2018)
Fornax	2010	6.0	H.E.S.S.	Ann.	Maggio et al. (2021) Abramowski et al. (2014)
				Ann.	Abdalla et al. (2018a)
Ursa Major II	$2014 - 2016$	94.8	MAGIC	Ann.	Ahnen et al. (2018a)
Triangulum II*	$2014 - 2016$	62.4	MAGIC	Ann.	Acciari et al. (2020)
	< 2018	181	VERITAS	÷.	Kelley-Hoskins (2018)
Segue II	< 2018	19	VERITAS	\overline{a}	Kelley-Hoskins (2018)
Canes Ven I	${}_{<}$ 2018	14	VERITAS		Kelley-Hoskins (2018)
Canes Ven II	${}_{<}$ 2018	14	VERITAS	÷,	Kelley-Hoskins (2018)
Hercules	< 2018	13	VERITAS	\overline{a}	Kelley-Hoskins (2018)
Sextans	${}_{<}$ 2018	13	VERITAS	\overline{a}	Kelley-Hoskins (2018)
Draco II	< 2018	10	VERITAS	÷.	Kelley-Hoskins (2018)
Leo I	${}_{<}$ 2018	$\overline{7}$	VERITAS	\overline{a}	Kelley-Hoskins (2018)
Leo $\rm II$	< 2018	16	VERITAS	\overline{a}	Kelley-Hoskins (2018)
Leo IV	${}_{<}$ 2018	3	VERITAS	$\overline{}$	Kelley-Hoskins (2018)
Leo V	${}< 2018$	3	VERITAS	÷.	Kelley-Hoskins (2018)
Reticulum II	$2017 - 2018$	18.3	H.E.S.S. [†]	Ann.	Abdalla et al. (2020)
Tucana II	$2017 - 2018$	16.4	H.E.S.S. [†]	Ann.	Abdalla et al. (2020)
Tucana III*	$2017 - 2018$	23.6	H.E.S.S.	Ann.	Abdalla et al. (2020)
Tucana IV* Grus II*	$2017 - 2018$ 2018	12.4 11.3	H.E.S.S. [†] H.E.S.S. [†]	Ann. Ann.	Abdalla et al. (2020) Abdalla et al. (2020)

WHAT WE EXPECT (N-BODY SIMULATIONS)

Home message: 1+ big guy expected from theory!

Errani, 2023

 10^{10}

Tidal stripping seems to maintain DM cores (Errani's work)

THE BIG GUY?

[https://arxiv.org/abs/2311.101](https://arxiv.org/abs/2311.10147)47

The discovery of the faintest known Milky Way satellite using UNIONS

SIMON E. T. SMITH,¹ WILLIAM CERNY,² CHRISTIAN R. HAYES,³ FEDERICO SESTITO,¹ JACLYN JENSEN,¹ ALAN W. MCCONNACHIE,^{3,1} MARLA GEHA,² JULIO NAVARRO,¹ TING S. LI,⁴ JEAN-CHARLES CUILLANDRE,⁵
RAPHAËL ERRANI,⁶ KEN CHAMBERS,⁷ STEPHEN GWYN,³ FRANCOIS HAMMER,⁸ MICHAEL J. HUDSON,^{9,10,11}
EUGENE MAGNIER,⁷

FEW STARS

[https://arxiv.org/abs/2311.10](https://arxiv.org/abs/2311.10147)147

Table 2. Measured and derived properties for Ursa Major 3/UNIONS 1

We systematically exclude individual stars from the velocity dispersion estimation, one-by-one, and find that star $#2$ (denoted in Table 3), the largest velocity outlier, causes the largest change by reducing the velocity
dispersion to $\sigma_v = 1.9^{+1.4}_{-1.1} \text{ km s}^{-1}$. Continuing in this

DSPH LIMITS FROM IACTS AND FERMI

- \circ Upper limits on several targets (individual/combined)
- \circ Far less constraining than GC limits (but more robust)
- o Still far from 'thermal value'

 \leftarrow LSTs north alone

If UMa3/U1 confirmed dSph (and observed) huge jump in constraints
CTA KSP – IN PREP

DWARF DENSITY PROFILES GENERATED

MD Francesco Saturni Gonzalo Saturni Aldo Morselli

AND J-FACTOR PROFILES

MD Francesco Saturni Gonzalo Saturni Aldo Morselli

GENERATION OF SIGNAL MODEL

No std DM CTA gammapy pipeline

If interested (gammapy)

- Gonzalo Rodriguez + \rightarrow KSPs
- dmpipe \rightarrow Shotaro Abe+

If interested (ctools)

- Eckner+ \rightarrow GC

Dmtools? Judit Perez Romero

CHAMPIONS DSPHS DOMINATES

Limits dominated by best dSphs

Do we observe one/few/many? Strategy unclear

o And maybe new date before CTA advent

3.3 THE DARK SUBHALOES

It is possible that a fraction of DM subhalos did not accrete baryons. This would result:

- more likely high density in the center (DM spikes)
- no visible from stars

Detectable through gravitational interaction: stellar streams gaps or microlensing?. For small FOV instrument it's hard to spot them other than serendipitously.

ALL IN ONE PLOT

- o Galaxy clusters …poor for annihilating DM o Known dSphs…weak limits o LMC and GC strong limits, but robust?
- o Waiting for champion dSph!

3.5 SEARCH FOR DM LINES AND BOXES

Spectrum $dN/dln x$

MAGIC Phys.Rev.Lett. 130 (2023) 6 2403.04857 $\frac{5}{10}$
 $\frac{1}{2}$
 10^{-27} 10^{-28} GC (Einasto) GC (cored) and dSphs iis work (223 h) This work (cored Zhao, 223 h) 10^{-29} Fermi-LAT (isothermal, 5.8 y) E.S.S. (254 h) - HAWC (dSphs, 1038 days) Fermi-LAT (5.8 y) DAMPE (5.0 y) -- MAGIC (dSphs, 354 h) 10^{-30} $10²$ 10^{-1} 10 m_{DM} [TeV]

top-hat ν line $DM DM \rightarrow XX \rightarrow \gamma\gamma\gamma\gamma$ $DM DM \rightarrow \gamma\gamma$ **VIB** single saw-tooth Virtual $DM DM \rightarrow XX \rightarrow \gamma \gamma \gamma \gamma$ Internal **Bremsstrahlung** 0.1 0.3 Fractional energy in photons $x = E_y/M$

- o Smoking gun signatures of dark matter
- o Better have a nice energy resolution CTA!

RECAP FOR ANNIHILATION $+$ DECAY

M. Doro - MAGIC searches for dark matter decay in Perseus - IAU 2018

3.6 DECAY DM SEARCHES

- o Best done on object with 'a lot of DM' as opposed to 'highlydense'
- o Better done in galaxy clusters
- o Most DM dominated: Fornax, Perseus, Virgo --> See Biteau to know where we are

$$
\begin{cases}\nJ_{\text{ann}}(\Delta\Omega) = \int_{\Delta\Omega} \int_{\text{l.o.s.}} \rho_{\text{DM}}^2(\ell, \Omega) \, d\ell \, d\Omega & \text{Annihilating DM} \\
J_{\text{dec}}(\Delta\Omega) = \int_{\Delta\Omega} \int_{\text{l.o.s.}} \rho_{\text{DM}}(\ell, \Omega) \, d\ell \, d\Omega & \text{Decaying DM}\n\end{cases}
$$

ON/OFF TEMPLATE BACKGROUND

MAGIC s.Dark Univ. 22 (2018)

- o Background control regions (OFF) where to estimate the signal
- o What if src is extended? Template background method

LIMITS: DARK MATTER LIFETIME (CTA)

MAGIC s.Dark Univ. 22 (2018)

Figure 21. Sensitivity of CTA to a DM decay signal from the Perseus cluster, at 95% C.L., in terms **84**

CLOSING REMARKS

Galaxies **2022**, *10*(5), 92

DM GAMMA ANNIHILATION

Cirelli+ 2024

IACTs dominates the TeV, but.. The Contract of Contract of Contract of Contract of Contract of Contract of Con

COMPLEMENTARITY

M. Cahill-Rawley 1411.3353

CONCLUSIONS DM

- \circ Incontrovertible evidences of particle DM, don't trust the colleagues that tell you it does not exist
- \circ From the astrophysical point of view: A coherent picture of astrophysical DM give us the possibility to find a super-target, very DM dominated (dsph, dark subhalo, BHs)
- o However, where to point?
- \circ Important to create sinergies with spectrometers \rightarrow campaigns!
- \circ CTA DM pipeline being developed \rightarrow datachallenge!
- \circ From the particle physics point of view, gamma-rays are rather 'model independent' therefore any null result is a relevant limit

HOWEVER, AFTER 15 YEARS…PATIENCE REQUIRED

MD, M.A. Sanchez-Conde, M. Huetten. [https://arxiv.org/abs/2111.01](https://arxiv.org/abs/2111.01198)198

Thanks!

(90) BACKUPS

M. Doro - Topics of Fundamental Physics with IACTs - CTA School 2024