ELENA AMATO INAF-OSSERVATORIO ASTROFISICO DI ARCETRI

PARTICLE ACCELERATION IN NON-RELATIVISTIC ENVIRONMENTS

- EURISTIC DERIVATION OF FERMI ACCELERATION 0 FERMI ACCELERATION THROUGH THE TRANSPORT EQUATION
- 0
- WAVE PARTICLE INTERACTION
- MAXIMUM ENERGY
- **Ø FERMI ACCELERATION**
- NON-LINEAR EFFECTS
- PARTICLE INDUCED MAGNETIC TURBULENCE
- PARTICLE ACCELERATION IN RELATIVISTIC ENVIRONMENTS
 - UNIPOLAR INDUCTION
 - PARTICLE ACCELERATION AT RELATIVISTIC SHOCKS
 - GLACTIC PEVATRONS

PARTICLE ACCELERATION IN ASTROPHYSICS

Baade & Zwicki 1934 📰

QUALITATIVE SUGGESTION IN BRILLIANT PAPER

THE SNR/CR CONNECTION

 $L_{CR} = \frac{W_{CR}V_{CR}}{M_{CR}} \approx (3 - 10) \times 10^{40} \ erg/s$

$L_{SN} = \mathscr{R} E_{SN} \approx (3 - 10) \times 10^{40} \ erg/s$

 $\frac{L_{CR}}{L_{SN}} = 0.03 - 0.3$

Ginzburg 1960s

QUANTITATIVE

 $V_{CR} \approx \pi R_d^2 H \approx \pi (15 \ kpc)^2 ((1-3) \ kpc)$ $W_{CR} \approx 0.5 eV/cm^3$ $E_{SN} \approx 10^{51} erg$ $\mathcal{K} \approx$ (30 - 100) yr

KEPLET G EURERWORK PEMAJAAT

FARTICLE ACCELERATORS IN ASTROPHYSICS

A LARCE AND INCREASING VARIETY SUN AND STARS PLANETARY MAGNETOSPHERES

MICROQUASARS

STAR CLUSTERS

SUPERNOVA REMNANTS

Gal. longitude (deg)

PROTOSTELLAR JETS

NOVAE

Jets from Young Stars PRC95-24a · ST Scl OPO · June 6, 1995 C. Burrows (ST Sci), J. Hester (AZ State U.), J. Morse (ST Sci), NASA HST · WFPC2

CRAB NEBULA

PSR WIND NEBULAE

AGN

NON-RELATIVISTIC SOURCES

PLANETARY MAGNETOSPHERES SUN AND STARS

STAR CLUSTERS

Gal. longitude (deg)

PROTOSTELLAR JETS

Jets from Young Stars PRC95-24a · ST Scl OPO · June 6, 1995 C. Burrows (ST Scl), J. Hester (AZ State U.), J. Morse (ST Scl), NASA

NOVAE

MICROQUASARS

PSR WIND NEBULAE

CRAB NEBULA

PULSARS

Black hole engine

Prompt

NON-RELATIVISTIC SOURCES

Fermi 1949

 $\beta = V/c$

NOTE: IT IS ELECTRIC FIELD THAT DOES THE WORK!!!!

VELOCITY DIFFERENCE BETWEEN **REGIONS IN THE PLASMA LEAVES** UNSCREENED ELECTRIC FIELD

FERMI ACCELERATION MECHANISM

 $p_x \approx -\mu$ $E_{ci} = \gamma (E - \beta c p_x)$

 $E' = \gamma(E_{cf} + \beta c p_{xcf})$

IN THE CLOUD: -MULTIPLE SCATTERINGS -LOSS OF MEMORY OF INITIAL TRAJECTORY

 $E_{cf} = E_{ci}$

 $p_{xcf} = \frac{E_{cf}}{-\mu'}$

 $E' = \gamma E_{cf} \left(1 + \beta \mu' \right) = \gamma^2 E \left(1 - \beta \mu \right) \left(1 + \beta \mu \right)$

 $\frac{E'-E}{E} = \gamma^2 \left[\beta^2 \left(1 - \mu \mu' \right) - \beta \left(\mu - \mu' \right) \right]$ ΔE E

11

NOTE: IT IS ELECTRIC FIELD THAT DOES THE WORK!!!!

VELOCITY DIFFERENCE BETWEEN **REGIONS IN THE PLASMA LEAVES** UNSCREENED ELECTRIC FIELD

FERMI ACCELERATION MECHANISM $\frac{\Delta E}{E} = \frac{E' - E}{E} = \gamma^2 \left[\beta^2 \left(1 - \mu \mu' \right) - \beta \left(\mu - \mu' \right) \right]$ WHAT HAPPENS ON AVERAGE? $\mathcal{P}(\mu') = const$ $\mathscr{P}(\mu) = \propto v_{rel} = (v - V\mu)$ $\mathscr{P}(\mu') = \frac{1}{2}$ $\left\langle \frac{\Delta E}{E} \right\rangle = \int_{-1}^{1} d\mu \mathscr{P}(\mu') \int_{-1}^{1} d\mu \mathscr{P}(\mu) \frac{\Delta E}{E} \quad \left\langle -\frac{\Delta E}{E} \right\rangle$ -ACCELERATION IS SECOND

ORDER IN V/c -ONLY DUE TO SLIGHTLY LARGER NUMBER OF HEAD-ON COLLISIONS

FERMI ACCELERATION MECHANISM

HEAD-ON

$$\frac{\Delta E}{E} \right\rangle = \frac{4}{3} \left(\frac{V}{c}\right)^2$$

-ACCELERATION IS SECOND ORDER IN V/c

-ONLY DUE TO SLIGHTLY LARGER NUMBER OF **HEAD-ON COLLISIONS**

Fermi 1949

-MORE EFFICIENT PROCESS EXPECTED IF COLLISIONS ARE ALL

IVDDDDVNIA E

TORODTINAMIC
QUATIONS
$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} (\rho U) = 0$$
CONSERVATION $\frac{\partial}{\partial t} (\rho U) + \frac{\partial}{\partial x} (\rho U^2 + p) = 0$ CONSERVATION OF $\frac{\partial}{\partial t} \left(\frac{\rho U^2}{2} + \epsilon \right) + \frac{\partial}{\partial x} \left[\left(p + \epsilon + \frac{\rho U^2}{2} \right) U \right] = 0$ CONSERVATION C

$$\left[\rho U\right]_{0^{-}}^{0^{+}} = 0$$

$$\left[\rho U^{2} + \rho\right]_{0^{-}}^{0^{+}} = 0$$

$$\left[\left(p + \epsilon + \frac{\rho U^{2}}{2}\right)U\right]_{0^{-}}^{0^{+}} = 0$$

WHERE Γ is the adiabatic index

FERMI ACCELERATION MECHANISM

 $\rho_2 \ U_2 = \rho_1 \ U_1$

$$U_2^2 + p_2 = \rho_1 \ U_1^2 + p_1$$

$$_{2} U_{2}^{3} + \frac{\Gamma}{\Gamma - 1} p_{2} U_{2} = \frac{1}{2} \rho_{1} U_{1}^{3} + \frac{\Gamma}{\Gamma - 1} p_{1} U_{1}^{3}$$

 $\Gamma = 5/3$ FOR NON RELATIVISTIC PLASMA

 $\Gamma = 4/3$ FOR RELATIVISTIC PLASMA

F

FERMI ACCELERATION MECHANISM

 $\rho_2 \ U_2 = \rho_1 \ U_1$ $\rho_2 \ U_2^2 + p_2 = \rho_1 \ U_1^2$ $\frac{1}{2}\rho_2 U_2^3 + \frac{\Gamma}{\Gamma - 1}p_2$

 $R = \frac{U_1}{U_2} = \frac{\rho_2}{\rho_1}$ COMPRESSION RATIO

 $c_s^2 = \Gamma \frac{p}{\rho}$ SOUND SPEED

 $M_1 = \frac{U_1}{c_{s1}}$

SONIC MACH NUMBER

 $\frac{\rho_2}{\rho_1} = \frac{U_1}{U_2} = R \qquad \frac{p_2}{\rho_1 U_1^2} = 1 - \frac{1}{R}$

= 0

 $V = U_1 - U_2$

FERMI ACCELERATION MECHANISM

FERMI ACCELERATION MECHANISM $\frac{\Delta E}{E} = \frac{E' - E}{E} = \gamma^2 \left[\beta^2 \left(1 - \mu \mu' \right) - \beta \left(\mu - \mu' \right) \right]$ WHAT HAPPENS ON AVERAGE? $\mathscr{P}(\mu') \propto \mu' \quad (-1 < \mu' < 0)$ $\mathscr{P}(\mu) = \propto \mu \quad (0 < \mu < 1)$ $\int_{-\infty}^{1} \mathscr{P}(x) dx = 1$ $\mathscr{P}(\mu) = 2\mu$ $\mathscr{P}(\mu') = 2\mu'$ $\left\langle \frac{\Delta E}{E} \right\rangle = \int_{-1}^{1} d\mu \mathscr{P}(\mu') \int_{-1}^{1} d\mu \mathscr{P}(\mu) \frac{\Delta E}{E} \quad \left\langle -\frac{\Delta E}{E} \right\rangle$ $\left\langle \frac{\Delta E}{E} \right\rangle = \frac{4}{3} \left(\frac{V}{c} \right) - \frac{13}{9} \left(\frac{V}{c} \right)^2$ $V = U_1 - U_2$

FOR INFINITE PLANAR SHOCK, ALL PARTICLES RETURN FROM UPSTREAM $\frac{\partial f_0}{\partial \mu} = 0 \qquad \text{RETURNING PARTICLES IF } v\mu + U_2 < 0$ FOCUS ON DOWNSTREAM: PARTICLES ARE ISOTROPIC

FLUX OF RETURNING PARTICLES

$$_{-} = \int_{-1}^{-U_2/v} d\mu f_{0}$$

Φ

FLUX OF ESCAPING PARTICLES

$$\Phi_{\rightarrow} = \int_{-U_2/v}^{1} d\mu f_0 (U_2 + v\mu) = f_0 \frac{(v + U_2)^2}{2v}$$

 $E_{k+1} = (1+\xi)E_k \quad \xi = \frac{4}{3}\frac{U_1 - U_2}{C}$

NUMBER OF PARTICLES AFTER K CROSSINGS

 $N_{k+1} = N_k \mathscr{P}_{ret}$

 $f_0 (U_2 + v\mu) = f_0 \frac{(U_2 - v)^2}{2w}$.

UPSTREAM **DOWNSTREAM** PARTICLE ENERGY AFTER $E_{k+1} = (1+\xi)E_k \quad \xi = \frac{4}{3}\frac{U_1 - U_2}{C}$ k CROSSINGS NUMBER OF PARTICLES AFTER K CROSSINGS $N_{k+1} = N_k \mathscr{P}_{ret}$

FLUX OF ESCAPING PARTICLES $\Phi_{\rightarrow} = f_0 \frac{(v + U_2)^2}{2}$

ln

 $N_k = N_0 \mathscr{P}_{ret}^k$

 $E_k = (1 + \xi)^k E_0$

 $\ln\left(\frac{N_k}{N_0}\right) = k\ln P_{ret}$ $\left(\frac{E_k}{E_0}\right)$ $k\ln(1+\xi)$ ln =

FARTICLE SPECTRUM

FLUX OF RETURNING PARTICLES $\Phi_{\leftarrow} = f_0 \frac{(U_2 - v)^2}{2}$.

RETURN PROBABILITY $\mathscr{P}_{ret} = \frac{\Phi_{\leftarrow}}{\Phi} = \frac{(v - U_2)^2}{(v + U_2)^2} \approx (1 - 4U_2/v)$

$$\left(\frac{N_k}{N_0}\right) = \frac{\ln \mathscr{P}_{ret}}{\ln(1+\xi)} \ln\left(\frac{E_k}{E_0}\right)$$

$$N_{k} = N_{0} \left(\frac{E_{k}}{E_{0}}\right)^{-\gamma_{1}}$$
$$\gamma_{1} = -\frac{\ln P_{ret}}{\ln(1+\xi)}$$

 $N_k = N_0 \left(\frac{E_k}{E_0}\right)^{71}$ $\gamma_1 = -\frac{\ln \mathcal{P}_{ret}}{\ln(1+\xi)}$

 $\gamma_1 = -\frac{\ln \mathscr{P}_{ret}}{\ln(1+\xi)} = -\frac{\ln(1-4U_2/c)}{\ln(1+(4/3)(U_1-U_2)/c)} \approx \frac{4U_2/c}{(4/3)(U_1-U_2)/c}$ RECALLING $\frac{U_1}{U_2} = R$ $\gamma_1 = \frac{3}{R-1}$ $M_1 \to \infty$ $R \to 4$ $p_E \to 2$ $\gamma_E = \gamma_1 + 1 = \frac{R+2}{R-1}$

 $\frac{dN}{dE} \propto E^{-\gamma_E}$

FARTICLE SFECTRUM

 $E_k = (1+\xi)^k E_0 \qquad \qquad \xi = \frac{4}{2} \frac{U_1 - U_2}{2}$

NUMBER OF PARTICLES AFTER K CROSSINGS $N_k = N_0 \mathscr{P}_{ret}^k$ $\mathscr{P}_{ret} = 1 - \frac{4U_2}{2}$

TRANSPORT EQUATION APPROACH $f(\vec{x}, \vec{p}, t)$ PARTICLE DISTRIBUTION FUNCTION IN 6-DIM SPACE

•ASSUME ELASTIC SCATTERING

•ASSUME PROBABILITY OF CHANGE IN MOMENTUM INDEPENDENT OF PARTICLE HISTORY

ADVECTION INJECTION $\frac{\partial f}{\partial t} = \frac{\partial}{\partial z} \left[D \frac{\partial f}{\partial z} \right] - u \frac{\partial f}{\partial z} + \frac{1}{3} \frac{du}{dz} p \frac{\partial f}{\partial p} + Q(z, p, t),$ DIFFUSION ADIABATIC COMPRESSION

•VALID FOR NON-RELATIVISTIC BULK MOTION

•NEARLY ISOTROPIC f

•NEGLECT OF ANGLE TRANSFORMATION (SECOND ORDER ACCELERATION)

INJECTION ONLY AT SHOCK

 $Q(z, p, t) = Q_0(p)\delta(z)$

$$Q_0(p) = \frac{\eta U_1 n_1}{4\pi p_{inj}^2} \delta(p - p_{inj})$$

$$f_{th,2}(p)$$

TRANSPORT EQUATION APPROACH

 $\frac{\partial f}{\partial t} = \frac{\partial}{\partial z} \left[D \frac{\partial f}{\partial z} \right] - u \frac{\partial f}{\partial z} + \frac{1}{3} \frac{du}{dz} p \frac{\partial f}{\partial p} + Q(z, p, t),$

 $\frac{\partial}{\partial z} \left| \frac{\partial f}{\partial z} \right| - \frac{\partial f}{\partial z} + \frac{1}{3} \frac{du}{dz} \frac{\partial f}{\partial p} + Q(z, p, t) = 0$

 $f(z = 0) = f_0$ continuous across shock

INJECTION....

IN $(-\infty < z < 0^{-})$

BOUNDARY CONDITIONS

UPSTREAM SOLUTION

 $\frac{\partial}{\partial z} \left| \frac{\partial f}{\partial z} \right| - \frac{\partial f}{\partial z} + \frac{1}{3} \frac{du}{dz} \frac{\partial f}{\partial p} + Q(z, p, t) = 0$

FLUX CONSERVATION

 $\left(D\frac{\partial f}{\partial z}\right)_{0^{-}} = U_1 f_0$

DOWNSTREAM SOLUTION

 $\frac{\partial}{\partial z} \begin{bmatrix} \partial \overline{f} \\ D \frac{\partial f}{\partial z} \end{bmatrix} - u \frac{\partial f}{\partial z} + \frac{1}{3} \frac{du}{dz} p \frac{\partial f}{\partial p} + Q(z, p, t) = 0$

FLUX CONSERVATION

$$\frac{\partial}{\partial z} \left[D \frac{\partial f}{\partial z} - U f \right] = 0$$

$$\rightarrow \infty) \rightarrow \infty$$

UNLESS $A_1 = 0$

$$p) = f_0(p)$$

$$\left(\frac{\partial f}{\partial z}\right)_{0^+} = 0$$

$$f_0(p) = e^{-g(p)} \left(\int_{p_0}^p \frac{3R}{R-1} \frac{Q_0}{U_1} \frac{dp''}{p''} e^{g(p'')} dp'' + f_0(p_0) \right)$$

$$g(p) = \int_{p_0}^{p} \frac{3R}{R-1} \frac{dp'}{p'}$$

AT THE SHOCK

 $\frac{\partial f}{\partial z} + \frac{1}{3} \frac{du}{dz} p \frac{\partial f}{\partial p} + Q(z, p, t) = 0$

$< z < 0^{+}$)

 $\frac{\partial f}{\partial z} \bigg|_{1} + \frac{1}{3} \left(U_2 - U_1 \right) p \frac{df_0}{dp} + Q_0(p) = 0$

$\frac{df_0}{dp} + \frac{3R}{R-1}\frac{f_0}{p} = \frac{3R}{R-1}\frac{Q_0}{U_1 p}$

$$f_0(p) = \frac{3R}{R - 1} \frac{\eta n_1}{4\pi p_{inj}^3} \left(\frac{p}{p_{inj}}\right)^{-\frac{3R}{R - 1}}$$

AT A STRONG SHOCK: $R = 4 \Rightarrow \gamma_p = 4$ VERY SUITABLE TO EXPLAIN MEASURED COSMIC RAY SPECTRUM AFTER PROPAGATION IMPORTANT: IN FACT POWER LAW IN MOMENTUM, NOT IN ENERGY UNLESS... **ULTRARELATIVISTIC** $N(E)dE = 4\pi p^2 f(p)dp \Rightarrow N(E) \propto E^{-2}$

$N(E) \propto E^{-\gamma}$ $\gamma_E = \frac{R+2}{R-1}$ $R = U_2/U_1$ RELATIVISTIC PARTICLES!

 $f(p) \propto p^{-\gamma_p}$ $\gamma_p = \frac{3R}{R-1}$

PARTICLES OF ANY ENERGY!

 $N(E) = 4\pi p^2 f(p) (dp/dE)$ $\gamma_E = \gamma_p - 2$ ONLY IF dE/dp=c

NON-RELATIVISTIC $N(E)dE = 4\pi p^2 f(p)dp \Rightarrow N(E) \propto E^{-3/2}$

IMPORTANT: DIFFUSION COEFFICIENT PLAYS NO ROLE IN SPECTRUM!!!!!! IT DOES PLAY A ROLE IN DETERMINING MAXIMUM ENERGY!

 $R = 4 \Rightarrow \gamma_p = 4$ VERY SUITABLE TO EXPLAIN MEASURED COSMIC RAY AT A STRONG SHOCK: SPECTRUM AFTER PROPAGATION

 $f(p) \propto p^{-\gamma_p}$

$$N(E) \propto E^{-\gamma}$$

$\gamma_E = \frac{R+2}{R-1}$ $R = U_2/U_1$ RELATIVISTIC PARTICLES!

 $\gamma_p = \frac{3R}{R-1}$

PARTICLES OF ANY ENERGY!

 $N(E) = 4\pi p^2 f(p) (dp/dE)$ $\gamma_E = \gamma_p - 2$ ONLY IF dE/dp=c

PARTICLE TRANSPORT

MOTION OF A PARTICLE IN UNIFORM MACHETIC FIELD

$$\overrightarrow{B} = B_0 \hat{z}$$

 $\mu = \cos \theta = \frac{\overrightarrow{B} \cdot \overrightarrow{v}}{|\overrightarrow{B}| |\overrightarrow{v}|}$

HELICOIDAL MOTION

LARMOR FREQUENCY

$$\Omega = \frac{qB_0}{m\gamma c}$$

 $m\gamma \frac{d\mathbf{v}_x}{dt} = \frac{q}{c} \mathbf{v}_y \ B_0$ $m\gamma \frac{d\mathbf{v}_y}{dt} = -\frac{q}{c} \mathbf{v}_x \ B_0$ $m\gamma \frac{dv_z}{dt} = 0 \implies v_z = const$

 $v_x(t) = v_0 (1 - \mu^2) \cos(\Omega t)$ $v_{v}(t) = -v_0 (1 - \mu^2) \sin(\Omega t)$ $v_z(t) = v_0 \mu$

$$m\gamma \frac{dv_x}{dt} = \frac{q}{c} \left(v_y \ B_0 - v_z \ \delta B_y \right) \qquad v_x(t) = v_0$$

$$m\gamma \frac{dv_y}{dt} = -\frac{q}{c} \left(v_x \ B_0 - v_z \ \delta B_x \right) \qquad v_y(t) = -v_0$$

$$m\gamma \frac{dv_z}{dt} = \frac{q}{c} \left(v_x \ \delta B_y - v_y \ \delta B_x \right) \qquad m\gamma \frac{dv_z}{dt} = \frac{q}{c} v_0 \delta B_0$$

$$v_A = \frac{B_0}{\sqrt{4\pi\rho}} = 3 \times 10^5 \left(\frac{B_0}{\mu G}\right) \left(\frac{n}{\text{cm}^{-3}}\right)^{-1/2} \text{cm s}^{-1}$$

WAVE PARTICLE INTERACTIONS

 $\vec{k} = k\hat{z}$ $\delta B_{x}(t) = \pm \delta B \sin \left(kz - \omega t + \phi\right)$ $\delta B_{\rm v}(t) = \delta B \cos\left(kz - \omega t + \phi\right)$

$$\dot{\vec{p}} = q \frac{\vec{v}}{c} \wedge \left(\vec{B}_0 + \delta \vec{B}\right)$$

AFFECTS p_{\parallel}

 $(1 - \mu^2)^{1/2} \cos(\Omega t)$ $V_0 (1 - \mu^2)^{1/2} \sin(\Omega t)$

POLARIZATION

 $P\left(1-\mu^2\right)^{1/2} \times \left[\cos\left(\Omega t\right)\cos\left(kz-\omega t+\phi\right) \pm \sin\left(\Omega t\right)\sin\left(kz-\omega t+\phi\right)\right]$

 $\left\langle \Delta\mu\Delta\mu\right\rangle_t = (1-\mu^2) \left(\frac{\delta B}{B_0}\right)^2 \frac{\Omega^2}{4\pi^2} \int_0^{2\pi} d\Phi \int_0^{2\pi} d\Phi' \int_0^T d\Phi'$

AVERAGE OVER PHASES

MAVE PARTICLE INTERACTIONS

 $\vec{k} = k\hat{z}$ $\delta B_{x}(t) = \pm \delta B \sin (kz - \omega t + \phi)$ $\delta B_{v}(t) = \delta B \cos\left(kz - \omega t + \phi\right)$

 $v_x(t) = v_0 \left(1 - \mu^2\right)^{1/2} \cos(\Omega t)$ $v_{v}(t) = -v_0 \left(1 - \mu^2\right)^{1/2} \sin(\Omega t)$

 $\frac{dv_z}{dt} = \frac{q\delta B}{mvc} v_0 \left(1 - \mu^2\right)^{1/2} \left[\cos\left(\Omega t\right)\cos\left(kv_0\mu t + \phi\right) \pm \sin\left(\Omega t\right)\sin\left(kv_0\mu t + \phi\right)\right]$

$$dt \cos\left[\left(\Omega \mp k v_0 \mu\right) t \mp \phi\right] \int_0^T dt' \ \cos\left[\left(\Omega \mp k v_0 \mu\right) t' \mp \phi'\right]$$

 $\left\langle \Delta \mu \Delta \mu \right\rangle_t = (1 - \mu^2) \left(\frac{\delta B}{B_0} \right)^2 \frac{\Omega^2}{2} \int_0^T dt \int_0^T dt' \cos \left[\left(\Omega \mp k v_0 \mu \right) (t - t') \right]$

 $\delta B \ll B_0$ $\delta \overrightarrow{B} \perp \overrightarrow{B_0}$

 $\langle \Delta \mu \Delta \mu \rangle_t =$

 $r_L = \frac{cp}{eB_0}$

MAVE PARTICLE INTERACTIONS

 $\vec{k} = k\hat{z}$ $\delta B_x(t) = \pm \delta B \sin(kz - \omega t + \phi)$ $\delta B_{v}(t) = \delta B \cos\left(kz - \omega t + \phi\right)$

 $v_x(t) = v_0 \left(1 - \mu^2\right)^{1/2} \cos(\Omega t)$ $v_{y}(t) = -v_{0} \left(1 - \mu^{2}\right)^{1/2} \sin(\Omega t)$

 $\left\langle \Delta\mu\Delta\mu\right\rangle_t = (1-\mu^2) \left(\frac{\delta B}{B_0}\right)^2 \frac{\Omega^2}{2} \int_0^T dt \int_0^T dt' \cos\left[\left(\Omega \mp k v_0 \mu\right)(t-t')\right]$

$$= (1 - \mu^2) T \Omega^2 \left(\frac{\delta B}{B_0}\right)^2 \frac{\pi}{2v_0\mu} \delta \left(k \mp \frac{\Omega}{v_0\mu}\right)$$

$$= (1 - \mu^2) \frac{\pi}{4} \left(\frac{\delta B}{B_0}\right)^2 \Omega k_{res} \delta \left(k \mp \frac{\Omega}{v_0 \mu}\right)$$

 $\vec{k} = k\hat{z}$ $\delta B_x(t) = \pm \delta B \sin (kz - \omega t + \phi)$ $\delta B_{y}(t) = \delta B \cos\left(kz - \omega t + \phi\right)$

 $\frac{\Omega}{V_0\mu} = \frac{1}{r_L \mu}$

 $D_{\mu\mu} = (1 - \mu^2)$

IN ALL CASES RELEVANT INTERACTIONS ARE THOSE WITH RESONANT MODES THE POWER THAT MATTERS IS THAT IN RESONANT PERTURBATIONS!

WAVE PARTICLE INTERACTIONS SINGLE WAVE MODE

$$D_{\mu\mu} = \left\langle \frac{\Delta\mu\Delta\mu}{2T} \right\rangle = (1 - \mu^2) \frac{\pi}{4} \left(\frac{\delta B}{B_0}\right)^2 \Omega \ k_{res} \ \delta\left(k \mp \frac{\Omega}{v_0\mu}\right)$$

FULL WAVE SPECTRUM

$$\rangle = (1 - \mu^2) \frac{\pi}{4} \Omega k_{res} \int dk \, \mathcal{F}(k) \, \delta\left(k \mp \frac{\Omega}{v_0 \mu}\right)$$

)
$$\frac{\pi}{4}\Omega k_{res}\mathcal{F}(k_{res})$$
 ALSO $D_{\theta\theta} = \frac{\pi}{4}\Omega k_{res}\mathcal{F}(k_{res})$

A HARDE MARK MARK MARKEN STATE

CHANGE IN PITCH ANGLE IMPLIES NO CHANGE OF ENERGY IN WAVE FRAME

IN LAB FRAME

 $\Delta p \approx p \frac{v_A}{c}$

 $\langle \vec{E} \rangle = 0$

PITCH ANGLE DIFFUSION COEFFICIENT : $D_{\theta\theta} = \frac{\pi}{4} \Omega k_{res} \mathcal{F}(k_{res})$

$$D_{pp} = \left\langle \frac{\Delta p \Delta p}{T} \right\rangle \approx p^2 D_{\mu\mu} \left(\frac{v_A}{c} \right)^2$$

EITHER POSITIVE OR NEGATIVE

 $\langle \vec{E}^2 \rangle \neq 0$

 $D_{\mu\mu} = (1 - \mu^2) \frac{\pi}{4} \Omega \ k_{res} \ \mathcal{F}(k_{res})$

 $p^2 \approx \frac{p^2}{2}$ $\begin{pmatrix} C \end{pmatrix}$ $\approx v_A/$ r_{acc,II} 7 $D_{\mu\mu}$

 $au_{diff} pprox \overline{D_{AA}}$ CHARACTERISTIC TIME-SCALE:

MEAN FREE PATH:

PITCH ANGLE DIFFUSION:

 $D_{\theta\theta} = \frac{\pi}{\Delta} \Omega \ k_{res} \ \mathcal{F}(k_{res})$

 $D_{\parallel} \approx \frac{Cr_L}{3k_{ros}\mathcal{F}(k_{ros})} \approx \frac{Cr_L}{3(\delta B(k_{ros})/B_0)^2}$

DIFFUSION COEFFICIENT ACROSS THE BACKGROUND MAGNETIC FIELD PROPORTIONAL TO TURBULENCE LEVEL

SPATIAL DIFFUSION

CHANGE IN PITCH ANGLE IMPLIES CHANGE OF TRAJECTORY

SPATIAL DIFFUSION COEFFICIENT ALONG THE BACKGROUND MAGNETIC FIELD INVERSELY PROPORTIONAL TO TURBULENCE LEVEL

 $\int \delta B(k_{res})$ $D_{\perp} =$ $D_{\parallel} \approx cr_{l}$ B_{\cap}

ENERCY DEPENDENCE OF DIFFUSION COEFETCICIENT $D_{\parallel} \approx \mathcal{F}(k) \propto k^{-\alpha}$ ASSUME $k_{res}\mathcal{F}(k_{res}) \propto k_{res}^{1-\alpha} \propto p^{\alpha-1}$ $k_{res} = \frac{\Omega}{v_0 \mu} \propto p^{-1}$ DEPENDS ON TURBULENCE $D_{\parallel} \propto p^{2-\alpha}$ SPECTRAL INDEX

KOLMOGOROV	$\alpha = 5/3 \Rightarrow D(E) \propto E^{1/3}$
<raichnan< td=""><td>$\alpha = 3/2 \Rightarrow D(E) \propto E^{1/2}$</td></raichnan<>	$\alpha = 3/2 \Rightarrow D(E) \propto E^{1/2}$
BOHM	$\alpha = 1 \Rightarrow D(E) \propto E$

BOHM DIFFUSION COEFFICIENT TYPICALLY SMALLER THAN THE OTHERS BY A FACTOR $(r_L/L_{OUT})^{\alpha-1}$

MOST FAVOURABLE TO REACH HIGH ENERGIES

ACCELERATED PARTICLE SPECTRUM ONLY DEPENDS ON COMPRESSION RATIO BUT...

MAXIMUM ENERGY

 $E_{max} \leftarrow t_{acc} (E_{max}) = min \quad t_{age}, t_{loss} (E_{max})$

 $\left(\frac{D_1}{U_1} + \frac{D_2}{U_2}\right)$

 $\tau_{ret} = \frac{4D_1(p)}{U_1c} + \frac{4D_2(p)}{U_2c} \quad \text{(SEE e.g. DRURY '83)}$

$(D_2/D_1) \propto B_1/B_2 \approx 1/R \quad \Rightarrow \quad (D_2 \ U_2) \approx (D_1 \ U_1)$

 $E_{max,H} = q \mathscr{C} L$ $\mathscr{E} \sim \frac{v_{flow}}{-B}$ $E_{max,H} = q \frac{v_{flow}}{c} B L$

COMPARE SIZE AND TIME LIMITED ACCELERATION DIFFUSION WITH $D = \xi_B D_B$ WITH $\xi_B \gtrsim 1$

 $t_{acc} \sim \frac{D}{V_s^2} \lesssim t_{age}$ $E_{max,T} = \xi_B^{-1} q \frac{V_s}{C} BV_s t_{age} \lesssim \xi_B^{-1} q \frac{V_s}{C} B L \lesssim E_{max,H}$

FOR SYSTEM IN LINEAR EXPANSION SAME CONSTRAINT IF $D=D_B$

NOTE: SOLVING TRANSPORT EQ. WITH FINITE BOUNDARY UPSTREAM SHOWS EXPONENTIAL CUT-OFF AT Emax

$V_{\rm s} \approx 5 \times 10^8 \ cm/s$ SNR SHOCK WITH ISM FIELD $D(E) \approx 3 \times 10^{28} E_{GeV}^{1/3} \ cm^2/s$

 $t_{acc} < t_{age} \Rightarrow$

 $E_{max} \sim GeV$ IF SAME D AS IN ISM (Lagage & Cesarsky 83) $E_{max} \sim 10^3 - 10^4 GeV$ if same $\delta B \sim B_0$ at relevant scales...

ACE LIMITED MAXIMUM ENERCY Emax DEPENDS ON VELOCITY AND SCATTERING EFFICIENCY $E_{max} \leftarrow t_{acc} \left(E_{max} \right) = min \quad t_{age}, t_{loss} \left(E_{max} \right)$

 $t_{acc} = \frac{E}{dE/dt} = \frac{3}{U_1 - U_2} \left(\frac{D_1}{U_1} + \frac{D_2}{U_2}\right) \approx \frac{8D_1(E)}{V^2}$

40

LOSS LIMITED MAXIMUM ENERCEY $E_{max} \leftarrow t_{acc} \left(E_{max} \right) = min \left[t_{age}, t_{loss} \left(E_{max} \right) \right] \qquad t_{acc} = \frac{D_1(E)}{V^2}$ UPSTREAM DOWNSTREAM FOR LEPTONS Emax IS TYPICALLY LIMITED BY SYNCHROTRON LOSSES (dE/ $\frac{dE}{dt} = -\frac{4}{3}\sigma_T c \left(\frac{E}{mc^2}\right)^2 \left(\frac{B^2}{8\pi} + U_{rad}\right) \qquad \tau_{ICS} = 1.5$

 $t_{acc}(E_{\max}) = t_{sync}(E_{\max}) \iff \frac{c}{V_s^2} \frac{E_{max}}{eB} = \frac{6\pi m^2 c^3}{\sigma_T E_{max} B^2}$

 $\nu_{max,el} = 0.29 \frac{eB}{mc} \left(\frac{E_{max}}{mc^2}\right)^2 \approx 1 keV \left(\frac{V_s}{5 \times 10^8 cm/s}\right)^2 \qquad \text{X-RAYS}$

$$\frac{E}{dt)_{sync}} \approx 10^3 yr \left(\frac{E_e}{1TeV}\right)^{-1} \left(\frac{B_2}{100\mu G}\right)^{-2}$$
$$\times 10^6 yr \left(\frac{E_e}{1TeV}\right)^{-1} \left(\frac{U_{rad}}{eV \ cm^{-3}}\right)^{-2}$$

$$E_{max,el} = 30TeV \left(\frac{B_2}{100\mu G}\right)^{-1/2} \left(\frac{V_s}{5000 km/s}\right)^{-1/2}$$

41

IF ACCELERATION EFFICIENCY >=10% ENERGY BUDGET I CRs NON NEGLIGIBLE

CR PRECURSOR

DENSITY OF ACCELERATED PARTICLES

SUBSHOCK.

NON-LINEAR ENERGY

$$\frac{\partial}{\partial x} \left(\rho U \right) = 0$$
$$\frac{\partial}{\partial x} \left(\rho U^2 + p \right) = 0$$
$$\frac{\partial}{\partial x} \left[\left(p + \epsilon + \frac{\rho U^2}{2} \right) U \right] = 0$$

 $-\frac{\partial}{\partial x} \left[\frac{\rho u^3}{2} + \frac{\gamma_g u p_g}{\gamma_g - 1} \right] -$

$$\frac{\partial}{\partial x} \left(\rho U \right) = 0$$

$$\frac{\partial}{\partial x} \left(\rho U^2 + p_g + p_{CR} + p_w \right) = 0$$

$$-u\frac{\partial}{\partial x}\left[p_{CR}+p_{w}\right]+\Gamma_{w}E_{w}=0$$

SHOCK BECOMES RADIATIVE -> R>4

PARTICLES OF DIFFERENT ENERGY EXPERIENCE DIFFERENT R -> CONCAVE SPECTRUM

MAGNETIC FIELD AMPLIFICATION

CR SPECTRUM IN MODIFIED SHOCKS

MAGNETIC FIELD AMPLIFICATION

 $\delta B \propto e^{i(kz - \omega t)}$

 $dE_w/dt = 2\Gamma_w \delta B^2/8\pi$ dP_{wave}

CR STREAMING AT SUPERALFVENIC SPEED AMPLIFIES MAGNETIC TURBULENCE

INDUCES AMPLIFICATION UP TO $\delta B/B \leq 1$

RESONANT STRE

dt

PARTICLES MUST LOSE MOMENTUM TO WAVES DURING ISOTROPIZATION

$\frac{dP_{part}}{dt} = \frac{n_{CR}}{dt}$	$m \gamma (v_{bulk} - v_A)$ τ_{diff}	
$\frac{dP_{wave}}{dt} = \frac{1}{v_A}$	$\frac{dE_w}{dt} = 2\frac{\Gamma_w}{v_A}\frac{\delta B^2}{8\pi}$	
part t	$\Gamma_{w} = \frac{n_{CR} \ m \ \gamma(v_{bulk} - v_{A})}{\tau_{diff}} \frac{4\pi v_{A}}{\delta B^{2}}$	
AMING INSTABILI	$\tau_{diff} \approx \frac{1}{D_{\theta\theta}} = \frac{4}{\pi\Omega} \left(\frac{B}{\delta B}\right)^2$	
$\frac{R}{V_{bulk} - V_A} \omega_{ci}$	NOTE: GROWTH RATE DEPI ON RESONANT CR BUT NO	ENDS T ON

ON RESONANT CR BUT NOT ON B

AMPLIED MACHNETIC FIELDS

e.g. Vink 12

$B \approx 100 - 300 \ \mu G$

INTERPRET THE RIMS AS LOSS-LENGTH OF HIGHEST ENERGY ELECTRONS...

AMPLIED MAGNETIC FIELDS

 $\Delta x = \sqrt{D_B \ \tau_{sync}} = 0.04 B_{100}^{-3/2} \ pc$ $t_{\rm sync} = \frac{6\pi m^2 c^3}{\sigma_T E B^2}$ $D_B = \frac{c}{3}r_L = \frac{c}{3}\frac{E}{eB}$ $\Delta x \approx 0.01 \ pc$ $B \approx 100 - 300 \ \mu G$

e.g. Vink 12

$E_e \approx 10 \text{ TeV } \epsilon_{\gamma,\text{keV}} B_{100}^{-1/2}$

 ϵ_{v} =1 keV

30 TeV ELECTRONS

ELECTRONS ARE LOSS-LIMITED PROTONS COULD REACH HIGHER ENERGIES MFA A SIGN OF EFFICIENT PROTON ACCELERATION ITSELF

47

THE STREAMING INSTABLITY **KNOWN SINCE THE '70S** PARTICLES STREAMING AT $v_d > v_A$ RESONANTLY AMPLIFY AMBIENT ALFVEN WAVES WAVES AT $k_{res} = 1/r_L$ GROW WITH $\Gamma_{res} = \frac{\pi n_{CR}^*}{4 n_i} \Omega_c \frac{v_d - v_A}{v_d}$ WHERE $n_{CR}^* = n_{CR} \left(p > \frac{eB_0}{ck} \right)$ MAGNETIC FIELD CAN BE AMPLIFIED UP TO $\frac{\delta B}{B_0} \lesssim 1$

REANALYSIS BY BELL '04

Above description correct only if $\frac{4\pi}{--J_{CR}}$

 $r_{L,0}$

 $\frac{4\pi}{C} J_{CR} > \frac{B_0}{r_{LO}} \qquad \frac{U_{CR}}{U_R} > \frac{C}{v_d}$

Ptuskin & Zirakashvili 08

• CR CURRENT INDUCES COMPENSATING CURRENT IN THE PLASMA

• $\vec{J}_{ret} \times \vec{B}$ INDUCES TRANSVERSE PLASMA MOTION

RESULTING CURRENT ACTS AS A SOURCE OF B

FOR RIGHT-HAND POLARIZED WAVES, FIELD LINES ARE STRETCHED: FIELD IS AMPLIFIED POTENTIALLY WELL ABOVE B_0

49

BELL INSTABILITY: SATURATION

Caprioli & Spitkovsky 13,14

EA & Blasi 09

MAXIMUM ENERCEY AND PARTICLE ESCAPE

LITTLE UPSTREAM TURBULENCE

SELF-REGULATNG MECHANISM

PARTICLE ESCAPE IS SUPPRESSED

 $E_M \approx 130 \left(\frac{\xi_{\rm CR}}{0.1}\right) \left(\frac{M_{\rm ej}}{M_{\odot}}\right)^{-\frac{1}{3}} \left(\frac{E_{\rm SN}}{10^{51} {\rm erg}}\right) \left(\frac{n_{\rm ISM}}{{\rm cm}^{-3}}\right)^{\frac{1}{6}} {\rm TeV} \quad \mathbf{TYPE} \mathbf{I}$

MANY PARTICLES ESCAPE

TURBULENCE INCREASES

LARGE CURRENT

Type	Ia	II	Π^*	
$M_{\rm ei} [{ m M}_{\odot}]$	1.4	5	1	
$E_{SN} [10^{51} \text{ erg}]$	1	1	10	
$\dot{M} [10^{-5} M_{\odot}/yr]$	_	1	10	
$u_{w} [10^{6} \text{ cm/s}]$	1	1	1	
$r_1 [pc]$	-	1.5	1.3	

TYPE II*

TYPE II* WOULD DOMINATE ALSO AT 10²-10⁴ GeV

STEEP PARTICLE SPECTRA MAKE IT MORSEL

- PROPAGATION POINTS TO STEEP INJECTION SPECTRA (Aquilar+ 16; EA & Blasi 18)
- INJECTED PARTICLE SPECTRA STEEP ONLY IF SOURCE SPECTRA STEEP (Schure & Bell 14; Cardillo, EA, Blasi 15)

RARE (<1/10000 yr⁻¹) EXTREME EVENTS (E_{sn}>10⁵²erg) EXTREME EFFICIENCY (ξ_{CR}>30%) NO HOPE IF SPECTRUM STEEP

 $E_p \approx 300 \ TeV$

Abeysekara+ 21

E_v (eV)

101

Aharonian et al. (2019)

ARGO

10-13

109

FERMI VIEW

THE CYCENNES REELENTON AN EXTREMELY CROWDED REGION

CTA (Bykov+20, Morlino+21) AND ASTRI-MiniArray (Vercellone+ 22) NEEDED TO DISENTANGLE SOURCES AT 1-100 TeV HAWC VIEW

Abeysekara+ 21

Morlino+ 2021

CR DISTRIBUTION (based on Morlino+ 2021)

HI from 21cm (CGPS)

Circles from Fermi (Aharonian+ 2019) and HAWC analyses (Abeysekara+2021)

KOLMOGOROV $(D \propto E^{1/3})$ IMPLIES TOO LOW $E_{\rm max}$ UNLESS $L_{\rm w} \sim 10^{39} {\rm erg/s}$

SPECTRA

GAMMA-RAY SPECTRUM AND SPATIAL PROFILE

CR DISTRIBUTION (based on Morlino+ 2021)

> HI from 21cm (CGPS) 6.0 0.5 0.0 HII from Nobeyama and ${}^{12}CO$ GPS (Dame+ 2001) Circles from Fermi (Aharonian+ 2019) and HAWC analyses (Abeysekara+2021)

TOTAL GAS DENSITY (Menchiari+ 2024)

SIMULATED EMISSION MARS: CYGNUS KOLMOGOROV

(Xco=1.68 1020 mol. cm-2 K-1 km-1 ; -20km/s<v<20km/s)

Pointings: Hexagonal grid (average distance $\approx 1^\circ$, time=200h)

SIMULATED CTA OBSERVATIONS

CTAO CP on *Star Forming Regions* CTA coll (c.a. Marcowith)

COURTESY OF S. Menchiari

UNVEILING THE TURBULENCE IN CYGNUS OB2

CTA coll (c.a. Marcowith)

PRESENTED TO RESENT

DETECTED PEVATRONS: LEPTONS OR HADRONS? 12 SOURCES DETECTED BY LHAASO ABOVE 100 TeV

Table 1 | UHE γ-ray sources

Source name	RA (°)	dec. (°)	Significance above 100 TeV (×σ)	E _{max} (PeV)	Flux at 100	FeV (CU)
LHAASO J0534+2202	83.55	22.05	17.8	0.88 ± 0.11	1.00(0.14)	
LHAASO J1825-1326	276.45	-13.45	16.4	0.42 ± 0.16	3.57(0.52)	
LHAASO J1839-0545	279.95	-5.75	7.7	0.21 ± 0.05	0.70(0.18)	
LHAASO J1843-0338	280.75	-3.65	8.5	0.26 -0.10 ^{+0.16}	0.73(0.17)	
LHAASO J1849-0003	282.35	-0.05	10.4	0.35 ± 0.07	0.74(0.15)	
LHAASO J1908+0621	287.05	6.35	17.2	0.44 ± 0.05	1.36(0.18)	
LHAASO J1929+1745	292.25	17.75	7.4	0.71-0.07 ^{+0.16}	0.38(0.09)	
LHAASO J1956+2845	299.05	28.75	7.4	0.42 ± 0.03	0.41(0.09)	
LHAASO J2018+3651	304.75	36.85	10.4	0.27 ± 0.02	0.50(0.10)	
LHAASO J2032+4102	308.05	41.05	10.5	1.42 ± 0.13	0.54(0.10)	Cygnus
LHAASO J2108+5157	317.15	51.95	8.3	0.43 ± 0.05	0.38(0.09)	NO PSF
LHAASO J2226+6057	336.75	60.95	13.6	0.57 ± 0.19	1.05(0.16)	G106.3+

Pev electrons require sufficient drop and $v_{flow} \sim c$

ALL SOURCES BUT ONE HAD 1+ PSR IN THE FIELD

Cao+ 2021

-35 ASSOCIATIONS WITH PULSARS OUT OF 90 SOURCES -22 OUT OF 43 AT UHE -MANY BUT NOT ALL THE MOST ENERGETIC PSRs: WHY? -ONE ms PSR: NEW CLASS? ms PSR WIND NEBULAE?

PULSAR ASSOCIATIONS IN 1LHAASO

PULSARS AS UNIPOLAR INDUCTORS

UNIPOLAR INDUCTION

z δΩ Bo $\Delta \Phi$ R

 $\Delta \Phi^{FD} \approx B_d \frac{\Omega R_d}{R_d}$

 $\overrightarrow{E} = - \frac{\overrightarrow{v}}{-} \wedge \overrightarrow{B}$ C $\vec{v} = \Omega \ r \ \hat{e}_{\phi}$

 $\overrightarrow{E} = -\frac{\Omega r}{C} B_0 \hat{e}_r$

 $4\pi\rho_e = \overrightarrow{\nabla}\cdot\overrightarrow{E}$

THE GOLDREICH AND JULIAN MAGNETOSPHERE

Goldreich & Julian 1969

PULSAR BASIC ELECTRODYNAMICS

 $J_{\star} = \rho_{\rm GJ}^{\star} c \qquad J = J_{\star} \frac{B}{B_{\star}} \qquad J_{GJ} = c \rho_{GJ} \propto B_z$

UNSCREENED ELECTRIC FIELD IS LEFT IN ALL CASES IF PARTICLES FROM STAR SURFACE ONLY

GAPS IN THE MAGNETOSPHERE

Cheng & Ruderman 1977

PAIR PRODUCTION

 $\chi = \frac{\epsilon_{\gamma}}{m_e c^2} \frac{B}{B_{\text{QED}}} = 0.4 \left(\frac{\epsilon_{\gamma}}{10 \text{MeV}}\right) \left(\frac{B}{10^{12} \text{G}}\right)$

 $= \frac{4.4}{\lambda_c} \frac{B_{\text{QED}}}{B} \exp\left(\frac{1}{B}\right)$ 3x

Erber 1966

POLAR GARS

 $\boldsymbol{\Omega} \bullet \boldsymbol{B} > 0$

Harding 07

VACUUM GAP

 $T_s < T_{e,i}$

 $\boldsymbol{\Omega} \bullet \boldsymbol{B} < 0$

 $T_e \approx 3.6 \times 10^5 \text{ K} \left(\frac{Z}{26}\right)^{0.8} \left(\frac{B_{\star}}{10^{12} \text{G}}\right)^{0.4}$

0.73 $T_i \approx 3.5 \times 10^5 \text{ K} \left(\frac{B_{\star}}{10^{12} \text{G}}\right)^{0.75}$

closed magnetosphere

base of the wind (open field lines)

Petri 2017

DIACENOSTICS OF THE CASCADE DEATHLINE GAMMA-RAYS MULTIPLICITY

$$(E\gamma>50 \text{ MeV}) \implies \gamma+B \rightarrow e^++e^-$$
$$\gamma_{secondary} \sim 10^{2-3}$$
$$\gamma-RAYS$$

$$L_{\rm radio} \leq 10^{-1}$$

$$L_{\gamma} \sim 10^{-2} E$$

THE PULSAR POTENTIAL DROP

 $\Delta \Phi^{PC} \approx \frac{B_{\star} \Omega R_{\star}^2 R_{\star}}{R} \approx \dot{E}$ $c R_I$

 ΩB_0 ρ_e^{FD} $2\pi c$ $\Delta \Phi^{FD} \approx B_d \frac{\Omega R_d}{C} R_d$

PULSAR WIND NEBULAE

3C58 (Chandra)

G21.5-0.9 (Chandra)

Vela Nebula (Chandra)

Crab Nebula (composite)

PSR B1509 (X-ray composite)

PULSAR WIND NEBULAE OR PLERIONS

SNRs WITH
CENTER FILLED MORPHOLOGY
BROAD NON THERMAL SPECTRUM
FLAT RADIO SPECTRUM

 $F_{\nu} \propto \nu^{-\alpha}, \quad \alpha < 0.5$

PULSAR WIND NEBULAE: THE CRAB NEBULA AS A PROTOTYPE

Adapted from Kennel & Coroniti 1984 [Del Zanna & Olmi 2017]

unshocked ISM

FS

log R [pc] SHOCKED EJECTA

UNSHOCKED EJECTA

THE CRAB NEBULA AT DIFFERENT FREQUENCIES

RADIO (VLA)

UV (Astro-1)

IR (Spitzer)

X-Ray (Chandra)

Pixel Size

Hard X-Ray (HEFT)

Visible (Hubble)

BROAD BAND NON-THERMAL SPECTRUM

synchrotron radiation by relativistic particles in the nebular B field **Inverse Compton scattering** with local photon field

THE CRAB NEBULA SPECTRUM

THE CRAB NEBULA IN CAMMA-RAYS

FOR ICS ON CMB $\epsilon_{\gamma} \approx 0.37 \ (E_{\rm e}/{\rm PeV})^{1.3} \ {\rm PeV}$

Amato & Olmi 2021

THE ONLY ESTABLISHED GALACTIC PEVATRON!!!

 $E_{\rm e} \approx 2.4 ~{\rm PeV}$

HIGHEST ENERGY LHAASO DATA POINT

ONE ZONE MODELS (Pacini & Salvati 1973, EA+ 2000, Bucciantini+ 2011....)

10³⁸ Soft X Whipple 0 10³⁷ HEAO A4 HEGRA CANGAROO COMPTEL * CASA

EXTRAORDINARY ACCELERATOR!

BUT....

THE TERMINATION SHOCK

[Del Zanna & Olmi 2017]

PARTICLE ACCELERATION AT RELATIVISTIC SHOCKS

FERMI ACCELERATION
MAGNETIC RECONNECTION
ION CYCLOTRON ABSORPTION

THE PROBLEM

• RELATIVISTIC SHOCKS ARE PERPENDICULAR UNLESS $\theta < 1/\Gamma$ where θ is the angle between \overrightarrow{B} and the shock normal: very rare CONFIGURATION!!!!

• PERP. DIFFUSION IS SUPPRESSED VERY FEW PARTICLES COME BACK TO THE SHOCK FROM DOWNSTREAM, WHILE THE MAJORITY IS ADVECTED AWAY

• DIFFUSIVE SHOCK ACCELERATION REQUIRES VERY HIGH TURBULENCE LEVEL!

POWER-LAW DEVELOPS BUT SLOW PROCESS! scattering on small-scale turbulence: $E_{\rm Max} \propto t^{1/2}$

ERMI ACCELERCATION RELATIVISTIC UNMAGNETIZED!

Sironi, Spitkovsky, Arons 2013

ACCELERATION COMPLETELY SUPPRESSED FOR $\sigma > 10^{-3}$ $E_{\rm MAX} \approx \sigma^{-1/4}$

FERMI ACCELERCATION CELATIVISTIC MACHIETICS

IN PRINCIPLE VERY FLAT SPECTRA AT LOW ENERGY

FERMI ACCELERATION IN

SUCH LARGE K DIFFICULT TO ACCOUNT FOR [Timokhin & Harding 19]

IF REALIZED, RECONNECTION **BEFORE THE SHOCK**

FORCED MAGNETIC RECONNECTION

INTERACTION WITH X-POINT

DC ACCELERATION

THEN ADVECTION INTO MAJOR ISLANDS

BROAD SPECTRUM

BUT

 $r_L \sigma$

 $\epsilon_{\mathbf{B}}^{-}\epsilon_{\mathbf{E}}$

 $\sigma > 30$

 $> few \times 10$ $r_L \sigma$

 $\kappa > few \times 10^{7}$

RESONANT CYCLOTRON ABSORPTION IN ION DOPED PLASMA shock front

the transition

Configuration at the leading edge ~ cold ring in momentum space

PARTICLE SPECTRA AND ACCELERATION EFFICIENCY •IONS CARRY MOST OF THE ENERGY: κ<m_i/m_e •WIND SUFFICIENTLY COLD: δu/u<m_e/m_i

ACCELERATION EFFICIENCY: ~few% for U_i/U_{tot} ~60% ~30% for U_i/U_{tot} ~80%

SPECTRAL SLOPE: >3 for U_i/U_{tot} ~60% <2 for U_i/U_{tot} ~80%

PARTICLE ACCELERATION MECHANISMS (MORE RECENTLY PROPOSED)

SHOCK CORRUGATION - FORMULATED TOGETHER WITH B DISSIPATION [Lemoine 17, Lyutikov+12] - INTERESTING SCENARIO FOR SPEEDING UP FERMI PROCESS

TURBULENT ACCELERATION AT THE SHOCK – ASSUMES DIFFERENT TURBULENCE LEVELS AT DIFFERENT SHOCK LATITUDES [Giacinti & Kirk 18]

- PRODUCES HARD (STEEP) SPECTRA FOR LOW (HIGH) TURBULENCE LEVEL
- INTERESTING LATITUDE DEPENDENCE OF SPECTRAL INDEX
- ACCELERATES ONE SIGN OF CHARGES PREFERENTIALLY

- ANISOTROPIC FIELD HELPS PROVIDING THE TURBULENCE [Cerutti & Giacinti 20] - SPECTRUM HARDENS WITH INCREASING MAGNETIZATION

 ACCELERATION BY HIGH σ TURBULENCE
 ENERGY DEPENDENT ANISOTROPY OF PARTICLE DISTRIBUTION MIMICS FLAT PARTICLE SPECTRA AT LOW ENERGY [Comisso+ 18,19,20, Luo+21]
 WHERE? ON WHAT SCALES? MAXIMUM ENERGY?
 IMPORTANT BROAD IMPLICATIONS!

OR LOW (HIGH) TURBULENCE LEVEL E OF SPECTRAL INDEX 5 PREFERENTIALLY

PARTICLE ACCELERATION MECHANISMS SUMMARY

FERMI MECHANISM

 FERMI MECHANISM
 FERMI MECHANISM
 Set the set the set of the s

NO ACCELERATION AT σ>0.001 SUPERLUMINAL SHOCKS [Sironi & Spitkovsky 09, 11]
 TOO SLOW TO GUARANTEE MAXIMUM ENERGY OBSERVED IN CRAB [Pelletier+ 17]
 ✓ POSSIBLY EFFICIENT AT HIGHLY TURBULENT MODERATELY MAGNETIZED SHOCKS [Lemoine 17, Giacinti & Kirk 18, Cerutti & Giacinti 20]
 ✓ RIGHT SPECTRUM FOR X-RAYS

DRIVEN MAGNETIC RECONNECTION: ✓BROAD AND HARD PARTICLE SPECTRA IF σ≥30 AND к>10⁸ [Sironi & Spitkovsky 11b] – FOR THIS LARGE к WIND LIKELY TO DISSIPATE BEFORE SHOCK [Kirk & Skjeraasen 03]

 RESONANT CYCLOTRON ABSORPTION:
 SPECTRA AND ACCELERATION EFFICIENCY DEPEND ON ENERGY FRACTION IN IONS: U_i/U_{TOT}=0.8-0.6, γ=1.5-3, ε_{ACC}=0.3-0.03 [Hoshino+ 92, EA & Arons 06; Stockem+ 12]
 HIGHER σ IMPLIES FASTER ACCELERATION
 NO ACCELERATION IF κ>m_i/m_e

MECHANISMS IN PANC

HOM TO CONSTRAIN PARTICLE ACCELERATION

[Amato & Olmi 22]

MECHANISM

FERMI

DRIVEN MAGNETIC RECONNECTION

ION CYCLOTRON ABSORPTION IN ION DOPED PLASMA

Topicalistic hand duad to a the state of the second duad to a state of the second duad to a state of the second duad to a state of the second dual and the second dual

PARTICLE ACCELERATION MECHANISMS handra

MAGNETIZATION:

REQUIRES LOW

Hubble

PLASMA MULTIPLICITY: **REQUIRES HIGH**

PLASMA MULTIPLICITY: REQUIRES LOW

DYNAMICS AND RADIATION MODELING

TERMINATION SHOCK

A: ULTRARELATIVISTIC WIND **B: SUBSONIC OUTFLOW** C: <u>SUPERSONIC FUNNEL</u>

[Komissarov & Lyubarsky 03,04; Del Zanna+ 04,06; Bogovalov+ 05;Camus+ 09; Volpi+ 08; Olmi+ 14,15,16;Porth+ 13,14] 102

IMPLICATIONS ON ACCELERATION MECHANISMS

NEBULAR DYNAMICS AND HIGH ENERGY EMISSION PROPERTIES

MODELLING OF RADIO EMISSION

MODELLING OF MULTIFREQUENCY VARIABILITY OF INNER NEBULA

 $\sigma \gtrsim 1$

TOO LARGE FOR FERMI ACCELERATION BUT TURBULENCE MIGHT HELP

 $\kappa \approx \text{few} \times 10^3$ **AND** $\Gamma > \text{few} \times 10^6$ **VIABLE**

ION CYCLOTRON VIABLE

ACCELERATION OF LOW AND HIGH ENERGY PARTICLES IN DIFFERENT REGIONS

MAXIMUM ENERCEY IN A PWN IN YOUNG ENERGETIC SYSTEMS ACCELERATION IS LOSS LIMITED

 $E_{max,abs} = e\eta_E B_{TS} R_{TS}$ $\frac{B_{TS}^2}{4\pi} = \eta_B \frac{\dot{E}}{4\pi R_{TS}^2 c}$ $= \eta_B \overline{4\pi R_{TS}^2 c}$

STRICT LIMIT FROM THE PSR POTENTIAL DROP $\Phi_{PSR} = \sqrt{\dot{E}/c}$

$E_{max,abs} = e\eta_E \ \eta_B^{1/2} \sqrt{\dot{E}/c} \approx 1.8 \ PeV \ \eta_E \ \eta_B^{1/2} \ \dot{E}_{36}^{1/2}$

MAXIMUM ELECTRON ENERGY AS A FUNCTION OF PSR POTENTIAL DROP AND LHAASO SOURCES

CYGNUS

de Ona Wilhelmi + 2022

LHAASO PEVATRONS AND PINNE

IF LEPTONS THEN PULSARS!

(a)

 10^{0}

Crab Nebula

10¹

 10^{-10}

Cao+, LHAASO Coll. 21

 $Q_p(E) \propto \delta(E - m_p c^2 \Gamma)$ (EA & Arons 06; EA, Guetta, Blasi 03)

HADRONS IN CRAB?

Vercellone+ 22; Fiori, EA + in prep.

+ PHOTODISINTEGRATION

AUGER CORRELATION: AGN:2.7 σ ; AGN+SBG: 3.7 σ ; SBG: 4 σ

$\mathrm{d}\gamma$	$Ze\Phi$	2π	$8\pi^2$	$Z^2 e^2$.4
$\overline{\mathrm{d}t}$ =	$\overline{Am_{ m p}c^2}$	$\overline{\xi P}$	$\overline{3cP^2}$	$\overline{Am_{ m p}c^2}$	γ

 $E_{\rm CR}(t) = E_0 \ (1 + t/t_{\rm sd})^{-1}$ ~ $1.2 \times 10^{20} \,\mathrm{eV} \eta A_{56} \kappa_4 I_{45} B_{13}^{-1} R_{\star,6}^{-3} t_{7.5}^{-1}$

$$\frac{dN_{CR}}{dE} = \int_{0}^{\infty} dt \dot{N}_{GJ}(t) \delta \left(E - E_{CR}(t)\right) = \frac{\dot{N}_{GJ}(0) t_{sd}}{E}$$

$$t_{sd} = \frac{9Ic^{3}P_{i}^{2}}{8\pi^{2}B^{2}R^{6}} \sim 3.1 \times 10^{7} \text{ s } I_{45}B_{13}^{-2}R_{\star,6}^{-6}P_{i,-3}^{2}$$

$$T_{NS} = [1,2,5,10]$$

$$T_{NS} = [1,2,5,10]$$

19.5 20 log(E/eV)

550L 17

17.5

18

18.5

19

PARTICLE SPECTRUM

 STILL MUCH TO UNDERSTAND ABOUT PARTICLE ACCELERATION IN ASTROPHYSICS

• AT NON-RELATIVISTIC SHOCKS THE MAIN PROBLEM STAYS THAT OF ACHIEVING THE MAXIMUM ENERGIES DEDUCED FROM CR OBSERVATIONS

• AT RELATIVISTIC SHOCKS (BETTER DISSIPATION REGIONS?) THE ACCLERATION PROCESS IS STILL OBSCURE

•SPECTRO-MORPHOLOGICAL INFORMATION FROM IACTS MOST POWERFUL TOOL TO CLARIFY THE PROBLEM

UP TO YOU! ENJOY THE WORK!

SUMMARY

-FERMI ACCELERATION (EURISTIC VERS M. Longair

-WAVE-PARTICLE INTERACTIONS: book "Plasma Physics for Astrophysics" by R. Kulsrud

-FERMI ACCELERATION THROUGH TRANSPORT EQUATION: Blandfold & Eichler 1987, Physics Reports 154, 1

-RELATIVISTIC SHOCKS: Sironi, Keshet, Lemoine, 2015, Space Science Review 191, 519

-FERMI ACCELERATION (EURISTIC VERSION): book "High Energy Astrophysics" by