

Atmospheric Characterization

of the Cherenkov Telescope Array

Markus Gaug markus.gaug@cta-observatory.org

Atmospheric Characterization

of the Cherenkov Telescope Array

Markus Gaug markus.gaug@cta-observatory.org

CTAO

Intro - Cherenkov light production 2 Intro - Physics of atmosphere Molecular profiles 3 Aerosols and clouds 4 Monitoring instruments 5 6 Correction strategies 1

Section of the presentation

Introduction

Cherenkov light production heights

Gamma-ray showers

Large fluctuations

- Gamma-ray first interaction stochastic process (but practically *no energy dependency* on average)
- Particle creation stochastic processes, averaged over many particles, *large energy dependency*

Cherenkov light production heights

- Only the "visible" Cherenkov light matters (i.e., ending up in the camera image).
- Considerable energy dependency
- Large spread over zenith angles!
- Where are the "obstacles"?

7

E [GeV]

8

Calima

Stratovolcanic₂₀ Low zenith **Debris** 95% of Cherenkov light H_{max} Stratovolcanoes 15 Height [km a.s.l.]
D
O 5 e de la cherenkov li matters $\mathcal{L}(\mathcal{L})$ is the contract of the contrac Stratovolcani²⁰ **High zenith** energy dependency of the construction of t **Debris** 15 • Large spread over zenith angles! Height [km a.s.l.]
D
O • Where are the "obstacles" ? 5 95% of Cherenkov light telescopes Stratovolcano H_{max}

 $10²$

 $10³$

E [GeV]

 $10⁴$

9

 $10⁵$

CTAO

10

Cherenkov light production

14

Greeslade J.W. et al., ACP 17 (2017) 10269

Cherenkov light extinctio n

- Average extinction profile (as function of wavelength) is **dominated by molecular (Rayleigh) scattering**
- However, molecular scattering is the **least variable part.**

Wavelength \lceil nm \rceil

Section of the presentation

Introduction

Physics of the Atmosphere

Structure of Atmosphere

- Pressure follows (roughly) the barometric law: $P(h) = P_0 \cdot \left(1 - \frac{L}{T_c}\right)$ T_{0} $(h - h_0)$ gM RL $\approx P_0 \cdot e^{-\frac{(h-h_0)}{8.5 \text{ km}}}$
- Temperature shows (roughly) regions of constant lapse rate:

 dT dh ≈ const. ≅ −6.5°C/km *(troposphere)*

• What about the density profile?

Structure of Atmosphere

• Pressure follows (roughly) the barometric law:

 $P(h) = P_0 \cdot \left(1 - \frac{L}{T_0}(h - h_0)\right)$ gM $\frac{e^{jH}}{RL} \approx P_0 \cdot e^{-\frac{(h-h_0)}{8.5 \text{ km}}}$

• Temperature shows (roughly) regions of constant lapse rate:

 dT $\frac{du}{dh}$ ≈ const. ≅ -6.5°C/km *(troposphere)*

• The density profile:

$$
\rho(h) = \frac{PM}{RT} = \frac{P_0 M}{RT_0} \cdot \left(1 - \frac{L \cdot h}{T_0}\right)^{\frac{gM}{RL} - 1} \approx \rho_0 \cdot e^{-\frac{h}{10.4 \text{ km}}}
$$

The truth is …

more complicated!

- Astronomical sites are normally characterized by temperatureinversion layers that "protect" the sites from humidity moving up to the telescopes.
- A closer look reveals more than one inversion layer (at least for La Palma)

The truth is …

more complicated!

- Also the tropopause is NOT just one huge inversion layer.
- Rodríguez-Franco J.J. et al. (J. Geoph. Res: Atmos. 118 (2013) 10754) find **two or three "tropopauses"** most of the time and a **single tropopause** only during **July and August**.

"Height" of the tropopause

Link to air showers

Molecular scattering cross section depends on the refractive index of air! $\frac{d\sigma(\phi,\theta,\lambda)}{d\Omega} = \frac{9\pi^2(n^2(\lambda)-1)^2}{\lambda^4N_c^2(n^2(\lambda)+2)^2} \left(\frac{6+3\rho}{6-7\rho}\right) \left(\frac{2+2\rho}{2+\rho}\right) \left(\sin^2(\phi) + \left(\frac{1-\rho}{1+\rho}\right)\cos^2(\phi)\cos^2(\theta)\right)$

• Above equation can be simplified: $\rho \approx 0.028 \ll 1$, $(n-1)_0 \approx 2.8 \times 10^{-4}$

$$
9 \cdot \frac{(n^2-1)^2}{(n+2)^2} \approx 4(n-1)^2
$$

and: $(n-1) \approx (n-1)_0(\lambda) \cdot N(h) = (n-1)_0(\lambda) \cdot \frac{P(h)}{P_0} \cdot \frac{T_0}{T(h)}$

$$
\bullet \frac{d\sigma}{d\Omega} \approx \left(\frac{d\sigma}{d\Omega}\right)_0 \cdot \frac{P(h)}{P_0} \cdot \frac{T_0}{T(h)}
$$
, residual dependency on humidity, CO₂ < 0.5%

Link to air showers

Cherenkov angle depends on the refractive index of air!

$$
\cos\theta_c = \frac{1}{\beta \cdot n(h)}
$$

• Above equation can be simplified (for $\beta \rightarrow 1$):

$$
\theta_c \approx \sqrt{2 \cdot (n-1)} \propto \sqrt{2(n-1)_0(\lambda) \cdot \frac{P(h)}{P_0} \cdot \frac{T_0}{T(h)}} \approx 0.024 \cdot \sqrt{\frac{P(h)}{P_0} \cdot \frac{T_0}{T(h)}}
$$

- Illuminated area on ground scales as $\theta_c^2 \propto \frac{P(h)}{P_c}$ P_{0} $\cdot \frac{T_0}{T_0}$ $T(h)$
- Amount of Cherenkov light emitted: $\propto \sin\theta_c^2 \approx \theta_c^2 \propto \frac{P(h)}{P_c}$ P_{0} $\cdot \frac{T_0}{T(h)}$ $T(h)$

Section of the presentation

Molecular Profiles

Global Data Assimilation Systems

- These (historical) data sets and weather predictions are free!
- American Global Forecast System (GFS)
- European Center for Medium Weather Forecast (ECMWF)

Global Data Assimilation Systems

- These (historical) data sets and weather predictions are free!
- American Global Forecast System (GFS)
- European Center for Medium Weather Forecast (ECMWF)

The truth is… more complicated!

Locations of IGRA 1 (green) and IGRA 2 (red) radio sounding stations during the years of (a) 2015, (b) 1990. A clear trend towards lower sounding coverage over the past years is observed, among other regions, in central South America. The CTAO sites are marked by the green (CTAO-N) and blue (CTAO-S) arrow.

Figures from Durre I., Yin X., Vose R.S. *et al.* (2018). J. Atm. & Oc. Techn. 35, 1753.

The truth is… more complicated!

GDAS1 vs. MAGIC Weather station (night-time 2013-15)

Ground validation of GDAS profiles for CTAO-N

MG et al., EPJ Web of Conf. 144 (2017) 01010

Mnolecular profiles

The truth is... more complicated!
ECMWF vs weather station, South

 $\mathbf 0$

5

 $T(^{0}C)$ weather station

Ground validation of GDAS profiles for CTAO-S

Georgios Voutsinas, priv. comm.

Mnolecular profiles

The truth is… more complicated!

Georgios Voutsinas, priv. comm.

Air density at the tropopause

• CTAO will simulate 2 (South) or 3 (North) reference profiles

31 Munar-Adrover, P. et al., EPJ Web of Conf. 197 (2019) 01002

Ozone intrusions into the troposphere

Skerlak B . et al., Atmos. Chem. Phys. 14

Section of the presentation

Aerosols and Clouds

Aerosols are any type of particle:

- Larger than molecules
- Suspended in air

- Normally found close to the ground (in the **planetary boundary layer**)
- Remain in air for up to 20 days

Local aerosols are measured as concentrations of particles exceeding a given diameter:

• PM10: Particles larger than $10 \mu m$

Local aerosols are measured as concentrations of particles exceeding a given diameter:

- PM10: Particles larger than $10 \mu m$
- PM2.5: Particles larger than $2.5\mu m$

Local aerosols are measured as concentrations of particles exceeding a given diameter:

- PM10: Particles larger than 10 μ m
- PM2.5: Particles larger than 2.5 μ m
- PM1: Particles larger than 1 μ m

Local aerosols are measured as concentrations of particles exceeding a given diameter:

- PM10: Particles >10 μ m
- PM2.5: Particles > $2.5 \mu m$
- PM1: Particles >1 μ m

Remote aerosols are measured in terms of **Aerosol Optical Depth (AOD)** or **Vertical Aerosol Optical Depth (VAOD)**

$$
T_{\text{aer}} = e^{-AOD} = e^{-\int_0^h \alpha(h')dh'}
$$

Clear night at ORM

come from:

- Sea (maritime aerosols)
-
-
-
- Volcanic eruptions Stratospheric Deserts Wood fires (biomass burning)
- Industrial activities (soot/dust)
- Transport

Aerosol Optical Depth

Normally, the atmosphere above both observatories are considered ultra-clean

41

42

Occasionally, particularly during summer or during February, Saharan dust intrusions may appear.

Dust intrusions may also be accompanied by clouds.

Frequency of dust intrusions

Seasonal variations for the 25_{th} , 50th, 75th percentile of PM10 measured at IZO.

Cuevas E. *Report on the incidence of african dust intrusions at the astronomical observatories of the canary islands: characterization and temporal analysis*

Frequency of dust intrusions

Ground layer aerosol transmission

Height of dust intrusions

Molecular atmosphere base height

Fruck C. et al., MNRAS 515 (2022) 4520

Clouds

Characterization of optical properties

Clouds are measured in terms of **Optical Depth (OD)** or **Vertical Optical Depth (VOD)**

$$
T_{\text{aer}} = e^{-OD} = e^{-\int_{h_{\text{min}}}^{h_{\text{max}}} \alpha(h')dh'}
$$

Clouds

Clouds are measured in terms of **Optical Depth (OD)** or **Vertical Optical Depth (VOD)**

Clouds

Clouds heights are measured from their base to top

Clouds

Normally, higher clouds are thinner and less opaque

Section of the presentation

Monitoring Instruments

LIDAR (LIght Detection And Ranging

Operation principles

A LIDAR always consists of a:

- Pulsed Laser
- Light Collector (Telescope)
- Light Detector (PMT)
- DAQ
- Analysis Software

LIDAR (LIght Detection And Ranging

Operation principles

A LIDAR always consists of a:

- Pulsed Laser
- Light Collector (Telescope)
- Light Detector (PMT)
- DAQ
- Analysis Software

LIDAR (LIght Detection And Ranging INCOMING LIGHT

Operation principles

CTAO will use a Raman LIDAR with two laser wavelengths:

- 355 nm
- 532 nm

LIDAR (LIght Detection And Ranging

Operation principles

A Raman LIDAR analyses elastically back-scattered light and Raman scattering on N_2 :

- 355 nm
- 387 nm

Clouds back-scatter light, but do NOT Raman scatter!

Monitoring instruments

LIDAR (Light Detection And Ranging

Monitoring instruments LIDAR (LIght Detection And Ranging

- Two distinct features visible:
- Lower steady thin layer of large opaque particles
- Higher variable thick layer of small transparent particles

Stellar Photometry (FRAM)

Operation principles

A FRAM always consists of a:

- a lens
- a filter (wheel)
- a CCD
- a mount

Stellar Photometry (FRAM)

Operation principles

A FRAM compares **stellar brightness** with their **reference from star catalogs** and measures **Vertical Aerosol Optical** Depth across its field-ofview

60

Stellar Photometry (FRAM) 0.2

Operation principles

A FRAM compares **stellar brightness** with their **reference from star catalogs** and measures **Vertical Aerosol Optical Depth** across its field-ofview

Janecek et al., EPJ Web of Conferences **197** (2019) 02008

Combination of Data from FRAM and LIDAR

- CTAO will generate **Average Extinction Cubes** for each Good Time Interval (**GTI**) and observed **FOV**.
- Systematic errors are guaranteed to lie below a given limit.

Section of the presentation

Correction Strategies

Correction Strategies for CTAO

Molecular profile and ozone

- CTAO will take care of providing the corresponding atmospheric profiles within the simulations (IRF) provided.
- The IRFs are delivered together with a guarantee for systematic errors to lie below a given limit.

Correction Strategies for CTAO

Aerosols and clouds

Two possibilities:

- 1. Correct the data
- 2. Correct the simulations

Correction strategies

Correction Strategies

Aerosols and clouds

Two possibilities:

1. Correct the data

Schmuckermaier F. et al., A&A 673 (2023) A2 find up to 20% RMSE for Crab Nebula data and $VAODs < 0.5$

Bias for Method II Syst. uncertainty attributed to Methods $\sqrt{20}$ Bias for flux (%) **Correction Strategies** 2⊦ $\stackrel{\leq}{=}$ $\stackrel{18}{\leq}$ οF uncertainties for -2⊦ Aerosols and clouds Residual -10 -12 -14 Two possibilities: -16^{+11} $8\frac{1}{5}$ 0.6 0.7 0.9 0.8 0.6 0.7 0.8 0.9 T_{9km} T_{9km} **MSE for Method II** $\frac{1}{2}$ flux (%)
3 1. Correct the data Residual MSE for f Schmuckermaier F. et al., A&A 673 (2023) A2 find up to 20% $10¹$ RMSE for Crab Nebula data and $VAODs < 0.5$

66

 0.9

l 9 km

 0.8

0.5

0.6

 0.7

Correction Strategies

Aerosols and clouds

2. Correct the simulations

- Would require **tailored simulations** for each GTI
- Huge amount of computing resources needed
- For the moment, only possible for few sources of high interest

Correction Strategies

Aerosols and clouds

Two possibilities:

1. Correct the data

Zywucka N. et al., A&A 685 (2024) A165 invented a new technique correcting each image directly (instead of IRFs only)

Correction Strategies

Aerosols and clouds

Two possibilities:

1. Correct the data

Zywucka N. et al., A&A 685 (2024) A165 invented a new technique correcting each image directly (instead of IRFs only)

www.ctao.org