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CR spectrum is not constant
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BHs are high-energy emitters
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Astrophysical jets are born magnetically dominated
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Astrophysical jets are born magnetically dominated
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TXS0506+56: neutrinos followed by gamma rays

IceCube/NASA
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Motivation

▶ Studying particle acceleration is essential to better understand
the physical processes in VHE emitters.
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Particle acceleration: 1st order Fermi process

Adapted from quantamagazine.org

[Bell, 1978]

⟨∆E/E ⟩ ∼ vsh/c (1)

[de Gouveia Dal Pino and Lazarian, 2005]

⟨∆E/E ⟩ ∼ vrec/c (2)
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Magnetic Reconnection: slow and turbulent

[Lazarian and Vishniac, 1999]

vrec,SP = vA(LvA/η)
−1/2 (3)

vrec = vAmin

[(
L

Li

1/2
)
,

(
Li
L

1/2
)]

M2
A (4)
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Regions for both mechanisms are not the same

Adapted from [Shukla and Mannheim, 2020]
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3D-RMHD simulations to study particle acceleration
RAISHIN [Mizuno et al., 2006] and PLUTO [Mignone et al., 2018]
codes:

∂

∂t


D
m
Et

B

+∇ ·


Dv

wtγ
2vv − bb+ Ipt

m
vB− Bv


T

=


0
fg

v · fg
0

 , (5)

D = γρ, m = wtγ
2v − b0b, Et = wtγ

2 − b0b0 − pt , (6)


b0

b
wt

pt

 =


γv · B

B/γ + γ(v · B)v
ρh + B2/γ2 + (v · B)2

p + B2/γ2+(v·B)2
2

 . (7)
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3D-RMHD simulations to study particle acceleration

[Medina-Torrejón et al., 2023]:

▶ RMHD-PIC jet subject to current-driven kink instability;

▶ Jets with σ ∼ B2/γ2ρh ∼ 1;

▶ 50000 protons evolving with the RMHD-PIC jet,

[Medina-Torrejón et al., 2023] [Medina-Torrejón et al., 2023]
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3D-RMHD simulations to study particle acceleration

[Medina-Torrejón et al., 2023]:

▶ 1000 protons in a nearly steady-state snapshot;

[Medina-Torrejón et al., 2023] [Medina-Torrejón et al., 2023]

▶ In short: particles experience Fermi-like acceleration and reach
a saturation energy.
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Not included in the previous simulations

▶ How important is feedback in the particle-plasma interaction?

▶ How important are radiative losses?
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Computing particle feedback with PLUTO: Post-processing
[Bai et al., 2015]:

FCR =

(
qCRE0 +

1

c
JCR × B

)
(8)

(qCR
c

)
i
=
∑
p

W (xi − xp)αpρp (9)

(
JCR
c

)
i

=
∑
p

W (xi − xp)αpρpvp, (10)

with αp = (e/mc)p being the CR charge-to-mass ratio and ρp
being the mass density contribution of a single particle.

Wi±1 =
1

2

(
1

2
± δ

)2

; Wi =
3

4
− δ2, (11)

with δ = (xp − xi )/∆x being the distance between the particle and
the i-esimal zone, and δ ∈ [−1/2, 1/2].
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Computing particle feedback with PLUTO: Post-processing

Strategy:

▶ Fetch J from PLUTO’s output;

▶ Compute JCR in a post-processing scenario:(
JCR
c

)
i

=
∑
p

W (xi − xp)αpρpvp, (12)

▶ Compute the Forces and work performed by the plasma:

∂

∂t
m+∇ ·

(
wtγ

2vv − bb+ Ipt
)
= FCR , (13)

Work = −⟨vCR · FCR⟩. (14)
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A. Carvalho et al. (in prep.)
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[Medina-Torrejón et al., 2023]
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A. Carvalho et al. (in prep.)
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A. Carvalho et al. (in prep.)
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Conclusions and Next Steps

▶ Feedback doesn’t seem to be important;

▶ Other kinds of statistical analysis?

▶ Include radiative losses in the computation.
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