Variability Analysis of Fermi-LAT data to improve prospects with CTAO

CTAO Summer School - Bertinoro & La Palma - 19/June/2024

Luana Passos Reis

Advisor: Elisabete M. de Gouveia Dal Pino

Image credit: NASA - Jet Propulsion Laboratory, California Institute of Technoloay

Variability Analysis of Fermi-LAT data to improve prospects with CTAO

Luana Passos Reis*, Elisabete M. de Gouveia Dal Pino, Tarek Hassan, Jonathan Biteau, Santiago Pita, Jean-Philippe Lenain & Atreya Acharyya

* luana.passos.reis@usp.br /

luana.passosreis@cta-consortium.org

Fermi-LAT (Large Area Telescope)

- NASA's Fermi Gamma-ray Space Telescope \bullet
- Observing X-rays and Gamma-rays from low Earth orbit since 2008! \bullet
	- \rightarrow energy range: 20 MeV to 300 GeV

Image credits: By NASA - https://science.nasa.gov/toolkits/spacecraft-icons, Public Domain, https://commons.wikimedia.org/w/index.php?curid=58291732 By NASA/DOE/Fermi LAT Collaboration - https://svs.gsfc.nasa.gov/11342, Public Domain, https://commons.wikimedia.org/w/index.php?curid=72966833

Introduction

- Procedure: Study through the data using the 4FGL Catalog \bullet
	- Light curves and Spectrum; \circ
	- **Fractional Variability;** \circ
	- Normalized Excess Variance. \circ

Introduction

- Procedure: Study through the data using the 4FGL Catalog \bullet
	- Light curves and Spectrum; \circ
	- **Fractional Variability;** \circ
	- Normalized Excess Variance. \circ
- Motivation:
	- Use public Fermi-LAT data to evaluate AGN daily variability; \circ
	- Estimate the impact of including this variability on AGN populations \circ detectability with CTAO.

Introduction

- Procedure: Study through the data using the 4FGL Catalog
	- Light curves and Spectrum; \circ
	- **Fractional Variability;** \circ
	- Normalized Excess Variance. \circ
- Motivation:
	- Use public Fermi-LAT data to evaluate AGN daily variability; \circ
	- Estimate the impact of including this variability on AGN populations \circ detectability with CTAO.
- In summary:
	- Look for "Variability Trends" (correlation) throughout different cadences; \circ
	- "How does variability affect the AGN population we might observe?"; \circ
	- Extrapolate light curves to CTAO's energy range (AGN Long-Term Monitoring). \bigcirc
- 4FGL: the Fourth Fermi LAT Source Catalog of y-ray detection \Box
- Energy range: from 50 MeV to 300 GeV \bullet

Fermi LAT 60-month image

Most of the sources are blazars!

Image credit: https://svs.gsfc.nasa.gov/11342

Blazars

Image credit: https://fermi.gsfc.nasa.gov/ssc/data/access/lat/LightCurveRepository/

Catalog divided into 3 blazar classes

DR3 Catalog with 3814 sources

- Low Synchrotron Peak: 1699
- Intermediate Synchrotron Peak: 536
- High Synchrotron Peak: 590 \bullet

that totalize 2825 sources with a Synchrotron Peak label

Downloaded 1429 valid light curves !

Image credit: Abdo et al. 2010

Variability in Blazars

- Particles are being accelerated and emits radiation from magnetically dominated \bullet processes in the inner region of the jet;
- Blazars are one of the most variable extragalactic object: \bullet strong broad-band emission ranging from radio to TeV energies!

Fractional Variability Parameter

$$
F_{\text{var}} = \sqrt{\frac{1}{F_{av}} \left[\frac{1}{N - 1} \sum_{i=1}^{N} (F_i - F_{av})^2 - \frac{1}{N} \sum_{i=1}^{N} \sigma_{\text{err},i}^2 \right]}
$$

$$
err(F_{\text{var}}) = \sqrt{\left(\sqrt{\frac{1}{2N} \frac{\sigma_{\text{err}}^2}{F_{av}^2 F_{\text{var}}} \right)^2 + \left(\sqrt{\frac{\sigma_{\text{err}}^2}{N} \frac{1}{F_{av}}} \right)^2}
$$

10 - Luana Passos Reis and San Denis Constantinople and San Denis Constantinople and San Denis Constantinople A

Normalized Excess Variance

$$
\sigma_{\text{NXS}}^2 = \frac{1}{F_{av}^2} \left[\frac{1}{N-1} \sum_{i=1}^N (F_i - F_{av})^2 - \frac{1}{N} \sum_{i=1}^N \sigma_{\text{err},i}^2 \right]
$$

$$
err(\sigma_{\text{NXS}}^2) = \sqrt{\left(\sqrt{\frac{2}{N}} \cdot \frac{\overline{\sigma_{\text{err}}^2}}{F_{av}^2} \right)^2 + \left(\sqrt{\frac{\overline{\sigma_{\text{err}}^2}}{N}} \cdot \frac{2F_{\text{var}}}{F_{av}} \right)^2}
$$

Vaughan et. al 2003

11 - Luana Passos Reis

Selecting bright sources & Treating outliers points

- Remove the sources (monthly timescale) with \blacksquare n° Upper Limits > n° flux measurements
- Remove, from the .json file of each source, the flux points in which
	- **n** flux error = 0
	- \blacksquare fit_convergence != 0
- Make the point an Upper Limit if
	- \blacksquare TS < 10

(minimal Test Statistic: significance of the detection)

• Selection of sources which show significant variability on a monthly timescale

$$
\sigma_{NXS}^2
$$
 (monthly) – 3 * $err[\sigma_{NXS}^2]$ (monthly) > 0

• Verification of 3-day timescale variability against monthly timescale variability

Selection of Sources

Preliminary Results

Preliminary Results

Dividing into subgroups

Look more careful into the lightcurves!

Deviation includes important information

Deviation includes important information

Selecting the blue sources

Preliminary Results

For $y < 10$

Try to set a correlation fit

Try to set a correlation fit

Summary of results until now

- Fermi-LAT only has made available the F_var calculations for the Year cadence
- We have F_var calculations for 3-day, Weekly and Monthly cadences
- To Cross-Check: We are using the History-Flux from the 4FGL to simulate their F var calculated for year cadence as in S. Abdollahi et al 2020 (ApJS 247 33).

Cross-Check of F_var in Year cadence

Year Cadence: Flux History w/ Flux $_{U}$ ~ 0, taking higher uncertainty

- Using the Flux History from the 4FGL to compare our calculations with their year F var
- **Consistent results for Year** Variability!
- Until now we have only used actuol Flux Meosurements
- We are treating and analyzing how to include Upper Limits in the analysis

Next Steps

- Look more careful into the lightcurve of the sources that deviate;
- Include Upper Limits in the analysis;
- Look for a correlation of the variability with:
	- Free Index; \circ
	- **Synchrotron Peak:** \circ
- Extrapolate the light curves using Gammapy in the AGN Long-Term \bullet Monitoring task force;
- In order to:
	- Find the observing time that CTAO will need for each source \circ
	- Estimate what CTA will be able to detect and how variability affects \circ the size of the population we identify

NGC 1068 (Messier 77)

T **hanks!**

Questions ?

luana.passos.reis@usp.br <u>luana.passosreis@cta-consortium.org</u> Claikson Benedito

&

Luana Reis Observatório Pico dos Dias (MG) - Jun/2023

Before and After Outlier Treatment

[41]: plot_lc('4FGL+J1512.8-0906.json', 8e-3, '3-days')

plot_lc('4FGL+J1512.8-0906.json', 8e-6, '3-days') $[40]:$ 4FGL+J1512.8-0906 Light Curve -- 3-days cadence $\sqrt{s^{-1}}$ • Flux Points oton Flux (0.1-100 GeV ph cm^{-2}
 \approx \approx \approx \approx \approx \approx **Upper Limits** 운 2008 2012 2014 2016 2018 2020 2022 2024 Date (UTC)

plot lc('4FGL+J1512.8-0906.json', 8e-3, '3-days') $[41]$:

before

after

Before and After Outlier Treatment

Preliminary Analysis

before

after

Preliminary Analysis

before

after

Preliminary Analysis

before

after

Bonus

MHD simulations and particle acceleration:

> **special case oÿ NGC 1068**

Luana Passos Reis

Elisabete M. de Gouveia Dal Pino Giovani Heizen Vicentin Filtros BVR, Luana e Claikson, OPD - MG - Jun/2023 **Chandra B. Singh** Chandra B. Singh

Neutrino VS gamma-ray flux from NGC1068

notopion \mathbf{B} component

routction

Neutrino VS gamma-ray flux from NGC1068

Electromagnetic observations (26)

0.1 to 100 GeV gamma-rays (40,41)

> 200 GeV gamma-rays (42)

What may accelerate these protons in the surroundings of the SMBH?

Neutrino VS gamma-ray flux from NGC1068

Electromagnetic observations (26)

0.1 to 100 GeV gamma-rays (40,41)

> 200 GeV gamma-rays (42)

Possible configuration of the magnetic field lines for an accretion flow into a black hole

Particles can be accelerated in the magnetic discontinuity according to a first-order Fermi process:

 $V_{\rm rec}$

Implies an exponential growth of the energy with time!

 ΔE

 E

 $V_{\rm rec}$

 \overline{C}

Mastichiadis 2016