1° CTAO School, June 16-22, 2024 – Bertinoro (Italy), La Palma (Spain)

Time Delays Between LLE and GBM light curves of GRBs

A CROSS CORRELATION ANALYSIS

Ph.D. student : Claudia Maraventano (University of Palermo) *Supervisor* : T. Di Salvo (University of Palermo) *Co-Supervisors* : G. Ghirlanda (INAF Brera) L. Nava (INAF Brera)

Credit: ESO

Gamma-Ray Bursts Origin and Classification

GRBs are classified by duration into:

Long GRBs (> 2 s)

- Collapse of massive stars;
- Found in young, active galaxies.

Short GRBs (< 2 s)

- Neutron Star / Black Holes mergers;
- Found in older, less active galaxies;
- Lack associated Supernovae.

Light Curves and Spectra of Gamma-Ray Bursts

The Fermi Gamma Ray Space Telescope

Credit: NASA/Goddard Space Flight Center. *Atwood + 2009*

Gamma-ray Burst Monitor (GBM): Broad energy range: 8 keV to 40 MeV. **Large Area Telescope (LAT)**: 20 MeV to over 300 GeV. **LAT Low Energy (LLE) Events**:

Extends LAT sensitivity down to about 10 MeV.

Cross-Correlation Analysis of GRB Light Curves Using GBM and LLE Data

Study Overview:

- Cross-correlation of GBM/LLE light curves of GRBs;
- Comparing keV / MeV emissions.

Previous Fundings:

- HE Fermi LAT emission (MeV-GeV) delayed with respect to keV emission;
- May interpreted as an additional component (early afterglow).

Meszaros & Rees 1999, Ghirlanda + 2010

Positive Lags: - Presence of an additional component, likely an early afterglow.

Negative Lags: - Absence of such component;

- Reflects GRB spectral evolution (emission becomes softer over time).

The Data Sample

- Original sample composed of 77 GRBs (as of March 2024);
- Successfully analysed : 59;
- Of these, 4 are SGRBs (T90 < 2 s).

The Data Sample

- Original sample composed of 77 GRBs (as of March 2024);
- Successfully analysed GRBs : 59;
- Of these, 4 GRBs are SGRBs (T90 < 2 s).

GBM / LLE data selection and Cross-Correlation Analysis

NaI : 10 keV – 100 keV BGO1 : 150 keV – 500 keV BGO2 : 500 keV - 1 MeV $LLE1: 30 MeV - 50 MeV$ LLE2 : 50 MeV – 100 MeV \Box

60 % of total NaI events 90 % of total BGO events 90 % of total LLE events

Example: Light curves of GRB 160625B

Times (s) from Trigger Time

The Discrete Correlation Function (DCF) Method

Times (s) from Trigger Time

A maximum in the DCF indicates a direct correlation of the data

Methodology introduced by Edelson & Krolik 1998 Followed in Pian + 2000, Del Monte + 2011, Ackermann + 2013.

Quantifiying Significance of Time Lags via Monte Carlo simulations

Simulated light curves and DCFs of GRB 160525B

Times (s) from Trigger Time

Times (s) from Trigger Time

Generated $N = 10.000$ random GBM and LLE LCs; Pairwise correlation using DCF method; • Uncertainty given as std of the lag distribution.

Methodology by Peterson + 1998 and Zhang + 1999

Time Lags of All The 59 Analysed GRBs

- BGO/NaI delays are fraction of seconds and tipically negative;
- LLE/NaI lags are larger (few seconds), both positive and negative.

Similar results found for LAT data in Abdo + 2009, Giuliani + 2010, Del Monte + 2011, Ackermann + 2011, 2013

Time Lag Significances

- Positive lags in NaI-BGO correlations lack statistical significance;
- LLE 1&2 lags show no significant difference between positive and negative values.

Time Lags Distribution of All The 59 Analysed GRBs

- Emissions above 30 MeV have variable delays;
- Sub-100 keV emissions consistently lag behind higher energy emissions by fractions of a second.

- Above 30 MeV, larger and positive time lags arise;
- Short GRBs exhibit minimal or zero time lags *As found also in Bernardini, Ghirlanda 2014*

- Significant lags are harder to detect at low fluence due to low statistics;
- Larger lags seem to occur at intermediate fluence within the sample.

Interpretation of GBM/LLE Time Lags

Spectral Evolution:

Delays may result from the spectral evolution between keV and MeV-GeV energies emission.

Emission Mechanisms:

Differences in emission mechanisms could explain observed delays.

Emission Regions:

Variations in emission regions may also contribute to these delays.

Ongoing research

- Current focus is on analyzing GBM and LLE spectra for GRBs;
- Seeking variations in spectral index and additional components, particularly around 30 MeV when positive lags appear;
- Evidence from literature supports the existence of early afterglows for some GRBs with positive delays at MeV energies.

Ghirlanda, Ghisellini 2010, Dichiara + 2022, Maselli, Ghirlanda 2013, Ravasio + 2018 and many more … Credit: NASA/Swift/Cruz deWilde

Potential Insights

Analyzing cross-correlations may reveal additional components in GRB emission.

Handling Low-Statistics Challenges:

- Providing an alternative method for studying GRB emission with limited data;

- Temporal analysis of GRBs can help us reveal features hard to detect in low-statistics spectra.

How can CTA be useful in studying GRBs?

- CTA's high sensitivity will enhance detection rate of VHE GRBs;
- insights into energy, spectral shape, t**e**mporal • Detailed VHE data from CTA will provide evolution, and physical conditions of GRBs;
- Overall, CTA observations will significantly advance our understanding of GRB environments and jet properties.

(Rendering Credit: G. Pérez, IAC, SMM, license CC BY-NC-ND 2.0)