Joint optical/VHE observations of pulsars with VERITAS

Samantha Wong | McGill University | CTAO School 2024 | samantha.wong2@mail.mcgill.ca

A brief introduction to VERITAS

VERITAS is an array of **four 12m IACTs** located near Tucson, AZ (**Northern hemisphere**) that has been taking data since 2007

Sensitive to VHE γ -rays from ~100 GeV to > 30 TeV

Our cameras each consist of 499 PMTs

The VERITAS Collaboration has ~80 members and ~50 associate members

→ Members from institutions in USA, Canada, Ireland, Germany, Japan, Spain, and Denmark

VERITAS is located at similar longitude to the CHIME radio survey telescope in Penticton, Canada \Rightarrow we can easily monitor radio transients simultaneously

Non-Cherenkov astronomy with IACTs

Samantha Wong | CTAO School 2024

CMG Lee / T. Hassan

Non-Cherenkov astronomy with IACTs

The VERITAS optical backend

VERITAS has a parasitic photometric optical backend that uses our current readout (traditionally used to monitor PMT currents) to monitor optical voltage in a pixel \Rightarrow optical photometry!

- \rightarrow PMTs are used for detecting Cherenkov light (~Bband)
- Our optical sampling rate is $\sim 1 \text{ kHz} \Rightarrow \text{VERITAS}$ is one of the most sensitive optical telescopes in the world for fast (<0.1 s) transients!

We can use this backend to look for time-varying & transient optical sources: fast radio bursts, asteroid occultations, pulsars, X-ray binaries, M dwarf flares, etc.

ECM: Instrumental limitations

ECM data are digitized fairly coarsely (122 mV), which erases dim signals

Sampling rate does not seem to be able to reach the quoted maximum of 4800 Hz

-> Our maximum sampling rate sits at ~ 1200 Hz, as derived from observations, but we do see small improvement for higher sampling rates

 \rightarrow This creates a smearing of rapid pulsed signals

ECM: Instrumental limitations

ECM data are digitized fairly coarsely (122 mV), which erases dim signals

Sampling rate does not seem to be able to reach the quoted maximum of 4800 Hz

→ Our maximum sampling rate sits at ~ 1200 Hz, as derived from observations, but we do see small improvement for higher sampling rates

 \rightarrow This creates a smearing of rapid pulsed signals

ECM — Limiting factors

We're really most sensitive to very fast periodic signals (< 0.1 s/10 Hz)

 \rightarrow Atmospheric scintillation, electronic noise, etc. become dominant below 10 Hz

 \rightarrow > 10 Hz ECM noise is Gaussian distributed & peaks in a L-S periodogram are distributed as a χ^2 distribution

We can detect bright sources (pulsed & single transients) at low magnitudes, but most of the new science we can do with the ECM involves dim sources 😥

Samantha Wong | CTAO School 2024

8

I. VHE & optical pulsars

Why study pulsars with VERITAS?

- 1) Discovery of optical emission from known pulsars
- → VERITAS can detect pulsed optical emission from the Crab pulsar
- \rightarrow Very few (< 10) pulsars have been detected to pulse at optical wavelengths largely due to lack of instrumentation
- 2) Discovery of second γ -ray emission component from known pulsars
- \rightarrow In 2023, H.E.S.S. discovered a new component of high energy emission from the Vela pulsar
- \rightarrow VERITAS and H.E.S.S. sensitivity are comparable but operate in different hemispheres \Rightarrow VERITAS may be capable of detecting this emission component from similar pulsars
- 3) Characterization of extended Galactic VHE γ -ray sources
- \rightarrow Recently, extended TeV emission has been detected around several middle-aged pulsars without any associated multiwavelength component
- \rightarrow New instruments are revealing more candidates for such sources, but don't have the angular resolution to confirm the nature of these sources or to confirm association with known pulsars

Why optical/VHE pulsars?

Samantha Wong | CTAO School 2024

Radio/HE pulses misaligned (most pulsars) Radio/HE pulses aligned (very few pulsars)

Samantha Wong | CTAO School 2024

12

Optical pulsar selection

Criteria:

- → Visible to VERITAS (> -14 deg declination)
- \rightarrow Rotation powered pulsar
- → Non-thermal X-ray or *Fermi*-LAT pulses detected
- \rightarrow < 0.1 s period

Magnitude estimates are from an assumed linear correlation of optical/X-ray flux

These are converted into simulated pulse trains using the X-ray pulse width and the Crab magnitude as seen by the ECM

Correlation Between X-ray and Optical Pulsar Efficiencies

Optical data analysis

Preliminary analysis: just concerned with detection

Frequency space analysis using a Lomb-Scargle periodogram (as implemented in astropy)

Significance calculated as the level at which we reject the null hypothesis that a frequency peak originates from just background/instrumental noise

With this method, we detect the Crab pulsar in < 2s!!

Samantha Wong | CTAO School 2024

16

II. Pulsar environments: PWNe & TeV halos

Pulsar wind nebulae/TeV halos

67.5

65.0

62.5

60.0

57.5

55.0

52.5

With ECM data we get simultaneous VHE γ-ray data

Many pulsars have associated pulsar wind nebulae (PWNe) or TeV halos

IACTs are particularly well-suited to associating and characterizing PWNe/TeV halo emission due to **improved angular & spectral resolution** compared to EAS detectors that operate at similar to higher energies

Samantha Wong | CTAO School 2024

PSR B1937+21

LHAASO source follow up

The first LHAASO catalog has revealed 32 new VHE/UHE sources in the Northern sky

 \rightarrow 16 of these sources have (tentative) pulsar or PWN/SNR associations

19 of these new sources overlap with archival **VERITAS data!**

 \rightarrow However, the location of these sources in our observations and large extensions of some sources make it difficult for a traditional reflected regions analysis

Samantha Wong | CTAO School 2024

75° 60° 1LHAASO sources with VHE counterparts 45° New sources in 1LHAASO New sources with VERITAS data 30° 15° 120° 90° 60° 30° -30° -60° 0° -90° -120° -180° 0° -15° 1 -30° -45° -60° -75°

- 1. Find archival data overlapping with 1LHAASO sources
- 2. Validate ring background method in gammapy for extended source analyses
- 3. Validate FoV method for 3D spectra of extended sources
- 4. Characterize biases in steps 2 & 3 using mimic data
- 5. Optimize gamma/hadron cuts for very hard sources, if necessary
- 6. Analysis of real data *(hopefully detections)*
- 7. Perform spectro-morphological studies and try to confirm associations with MWL sources

The future of pulsar astronomy with VERITAS & CTA

Optical:

 \rightarrow VERITAS is getting an optical upgrade ~late 2024 to directly read out voltage values from the FADCs \Rightarrow ~ns time resolution, GPS timing & improved digitization

 \rightarrow The larger mirror area of LSTs with a similar backend to the proposed VERITAS upgrade will

 γ -ray:

 \rightarrow Inclusion of the pSCT in VERITAS observations gives us a larger FoV for very extended sources

→ The much larger FoV of CTA (> 8 deg for SSTs), increased sensitivity, and broader energy range will allow for much more detailed spectra-morphological studies of LHAASO sources

 \rightarrow The lower energy threshold of CTA will help bridge the gap between Fermi-LAT and IACTs for better understanding the transition between GeV and TeV pulsar spectra

Samantha Wong | CTAO School 2024

Tibet AS₇ cm⁻² s⁻¹) HAWC EF(>E) (TeV СТА 10-14 10-18 10^{.1} 10 10 E (TeV)

Instrument	Instantaneous FoV (deg)	Angular resolution (deg)	Energ
VERITAS	3.5	0.08 @ 1 TeV	0.1
СТА	4 deg (LST), 7 deg (MST), 8 deg (SST)	0.06 @ 1 TeV	0.02
LHAASO WCDA	~180	0.45	0.2
LHAASO KM2A	~180	0.2	10 - 1

Thank you! Questions?

Samantha Wong | CTAO School 2024

23