Medium Size Telescope

Federica Bradascio (CEA Paris-Saclay) CTA School - June 2024

MST

Federica Bradascio

Brank and an ar

The Workhorse

 Large portion of the Observatory's energy range: 100 GeV - 30TeV

Large field of view: ~8°

Pointing precision of 7"

Positioning to any point in the sky (>30° elevation) in 90 s

Why MST telescopes?

Where?

What is an MST?

Why a Medium Size Telescope? To cover the energy range between 100 GeV and 30 TeV

Why MSTs?

AGN (e.g. M87)

Federica Bradascio

Which parameters to check?

MORPHOLOGICAL STUDIES

Where?

Where?

What is an MST?

Where do we install MSTs?

CTAS 14 MSTs

FlashCam cameras

Structures funded by Germany and Poland

Mirrors from France and Poland

Federica Bradascio

MST – CTA School – La Palma, June 2024

How do they work?

Which parameters to check?

When?

YOU ARE HERE!

NectarCAM cameras

Structures funded by Spain

CTAN

9 MSTs

Mirrors from Italy

What is an MST telescope?

Material Material

Federica Bradascio

- Made of steel
 - To ensure sufficient stiffness
 - No need for mirrors re-alignment for compensation of structure deformations during observations
- Total weight of 89 t

FOCAL LENGTH

16 m

What is an MST?

MST Structure Telescope optics

DISH STRUCTURE: 19.2 m radius sphere

Federica Bradascio

11.5 m

- Single mirror modified Davis-Cotton design
 - Reducing the dish-induced signal dispersion
 - Improve isochronicity of reflector
 - ➡ Focusing of light over 80% FoV w/ RMS <</p> 0.8 ns

Radius of curvature of each mirror (32.14 m) is x2 focal length

Where?

What is an MST?

CAMERA SUPPORT STRUCTURE DISH **STRUCTURE COUNTER WEIGHT S**TRUCTURE POSITIONER HOUSING ALL ELECTRICAL CABINETS

Federica Bradascio

MST – CTA School – La Palma, June 2024

MST Structure

Optical Support Structure

- Holds camera in the reflector's focal plane
- Maintains the ideal spherical shape of mirror segments
- Reduces load on the telescope's elevation axis, balancing it properly
- Allows pointing and tracking of objects on the sky: azimuthal + elevation movements
 - -270° < Azimuth < +270° 0° < Elevation < 91^{\circ}

MST Structure Calibration system

Wide FoV (26.5° x 17.8°), CMOS-based camera **POINTING CAMERA** for pointing calibration and mirror alignment

focal plane orientation wrt o

Federica Bradascio

VH

Al plate with honeycomb sandwich structure for enhanced stiffness

- 86 hexagonal-shaped with 1.2 m flat-to-flat side length to have effective mirror area ≥ 88 m² to cover energy range [150 GeV, 5 TeV]
- Radius of curvature of each mirror (32.14 m) is x2 focal length ($\mathbf{r} = 2\mathbf{f}$) to obtained a modified Davis-Cotton design
- Mirrors aligned to reflect rays parallel to the optical axis into the focal point
- Single mirror containment radius of ~0.06° to accurately reflects light to the focal point
- Lightweight (~18 kg each), with a low rate of reflectance loss

MST mirrors

Where?

What is an MST?

MST mirrors Obtained with "cold-slumping" technique

Mirror shape achieved by bending a thin glass sheet onto a mold with minimal thermal stress

MST — CTA School — La Palma, June 2024

Federica Bradascio

What is an MST?

MST mirrors Reflectivity > 85% in [300, 500] nm

Mirror facets coated with protective multilayer (SiO₂, HfO₂/ZrO₂)

Federica Bradascio

MST – CTA School – La Palma, June 2024

Where?

What is an MST?

FlashCam vs NectarCAM

CTAS

14 MSTs with FlashCAM

Federica Bradascio

How do they work?

Which parameters to check?

When?

CTAN 9 MSTs with NectarCAM

FlashCam Based on fully-digital readout and trigger systems

Federica Bradascio

1764 vacuum PMTs + Winston cones

Formation of electrical signal + improved photon collection efficiency

147 Photon Detection Plane (PDP) modules

Provide high voltage to PMTs, pre-amplification and interface for slow control, monitoring, and safety functions

Where?

What is an MST?

FlashCam

READOUT AND CONTROL ELECTRONICS

WINDOW AND SHUTTER

0

Federica Bradascio

Which parameters to check?

When?

MECHANICAL STRUCTURE/ THERMAL INSULATION

ELECTRONICS RACKS

FlashCam

First flight on the MST structure in Adlershof (Berlin) in September 2017

Federica Bradascio

Successfully installed on H.E.S.S. – CT5 in Oct 2019 Regularly taking data with uptime of ~98%

NectarCAM Modular structure with 265 7-pixels modules

Federica Bradascio

Where?

What is an MST?

NectarCAM mechanics

Built from independent units for construction and integration flexibility

TRIGGER AND DATA ACQUISITION SUBSYSTEMS

CENTRAL ASSEMBLY PRIMARY LOAD BEARING COMPONENT, COOLING SYSTEM

MST – CTA School – La Palma, June 2024

Federica Bradascio

FRONT ASSEMBLY

CAMERA ENTRANCE APERTURE, FOCAL PLANE

NectarCAM

First prototype installed on the MST structure in Adlershof (Berlin) in May 2019

Federica Bradascio

MST — CTA School — La Palma, June 2024

How do they work?

Which parameters to check?

FlashCam vs NectarCAM Main differences are the electronics and trigger designs

- Field of view of 7.5°
- Rack based electronics
- Separation between γ detection and electronics/processing
- "Off-the-shelf" components
- Non-linear amplification of P.E. current
 - 1 gain channel
 - Dynamic range of 0.2 3000 p.e.
 - 12-bit continuous digitization at 250 MHz
- Fully digital trigger form directly on data
- 128 ns waveforms to camera server

- Field of view of 7.7°
- Integrated modules
- Electronics mounted on phototubes
- Application Specific Integrated Circuits
- Linear amplification of P.E. current
 - 2 gain channels
 - Dynamic range of 0.5 2000 p.e.
 - 1GHz sampler+digitizer (NECTAr)
- Independent trigger channel
- Waveform integration window of 1-60 ns

How do we measure Cherenkov photons? The case of NectarCAM

Where?

What is an MST?

Why MSTs?

From photons to photoelectrons Impact of components on Cherenkov light detection efficiency

Federica Bradascio

ENTRANCE WINDOW

LIGHT GUIDES

HAMAMATSU **PMT**

Where?

What is an MST?

Formation of the electric signal

FOCAL PLANE MODULE

Federica Bradascio

FRONT END BOARD (FEB)

Where?

What is an MST?

From photons to photoelectrons Formation of the electric signal

FOCAL PLANE MODULE

WINSTON CONES

Federica Bradascio

MST — CTA School — La Palma, June 2024

FRONT END BOARD (FEB)

1. Light deposited in the camera is first collected in the light guides and detected in the focal plane

Where?

What is an MST?

Formation of the electric signal

FOCAL PLANE MODULE

PMTs

2. The signal is converted into electric signal by the **PMTs** and pre-amplified towards 2 gain channels: High Gain and Low Gain channels

MST – CTA School – La Palma, June 2024

Federica Bradascio

FRONT END BOARD (FEB)

Where?

What is an MST?

From photons to photoelectrons Formation of the electric signal

FOCAL PLANE MODULE

3. The signal is amplified again in the **ACTA amplifiers** and splitted into 3 channels: low and high gain channels and trigger channel

Federica Bradascio

FRONT END BOARD (FEB)

Trigger signal

ACTAS

Where?

What is an MST?

From photons to photoelectrons Formation of the electric signal

FOCAL PLANE MODULE

4. The HG and LG signals are sampled at 1 GHz in the **NECTAr chips** \rightarrow acts as a circular buffer which holds 500 ns of data until camera trigger occurs

Federica Bradascio

FRONT END BOARD (FEB)

NECTAR CHIPS

Where?

What is an MST?

Formation of the electric signal

FOCAL PLANE MODULE

Federica Bradascio

MST — CTA School — La Palma, June 2024

From photons to photoelectrons

FRONT END BOARD (FEB) **Trigger signal**

L0 ASICS (IN THE BACK OF THE FEB)

5. The LO ASICS processes analog signals from each PMT, comparing them to a threshold; if exceeded, it generates a digital LO signal

Where?

What is an MST?

From photons to photoelectrons Formation of the electric signal

FOCAL PLANE MODULE

Federica Bradascio

FRONT END BOARD (FEB)

6. When a trigger is formed, sampling is stopped, data are readout, digitised in a 12-bit ADC and sent to the camera server by Ethernet

Where?

What is an MST?

From photons to photoelectrons Formation of the electric signal

FOCAL PLANE MODULE

6. When a trigger is formed, sampling is stopped, data are readout, digitised in a 12-bit ADC and sent to the **camera server** by Ethernet

Federica Bradascio

MST — CTA School — La Palma, June 2024

FRONT END BOARD (FEB)

Where?

What is an MST?

The NectarCAM Trigger From the single pixels to a camera trigger

Significant amount trigger L0 trigger Lo neighbour of light in min ^{neighbour} 3 pixels **FEB** L1 **L**0 x265 Lo neighbour **NECTAr** Lo neighboui DTB chips

Sampling in the NECTAr chips is stopped and data readout

Federica Bradascio

Which parameters to check?

PMT waveform

Federica Bradascio

How a signal looks like in a pixel

Which parameters we need to calibrate? Some examples...

TIMING

Why MSTs?

Where?

What is an MST?

Light sources of NectarCAM In the testbench at CEA Paris-Saclay

Federica Bradascio

Which parameters to check?

When?

NectarCAM timing performance Precise timing information to combine Cherenkov light from all

telescopes and accurately reconstruct the showers

TEST SETUP

Illumination at different intensities

NECTARCAM

Federica Bradascio

MST — CTA School — La Palma, June 2024

Why MSTs? What is an MST? Where? NectarCAM timing performance Single pixel timing precision

Federica Bradascio

MST – CTA School – La Palma, June 2024

CTA requirement: < 2 ns RMS for an incoming light of intensity > 20 y (= 5 p.e.)

Federica Bradascio

MST — CTA School — La Palma, June 2024

NectarCAM deadtime

A new NECTAr chip to reduce the deadtime

- The current NECTAr chip readout dominates the deadtime ~5% at 7kHz
- The new FEB (version 6) uses a new NECTAr chip which can run in *ping*pong mode
- This reduces the deadtime by an order of magnitude

Deadtime tested at IRFU with ~10 preseries FEBv6

Why MSTs?

Where?

What is an MST?

Federica Bradascio

MST – CTA School – La Palma, June 2024

Why MSTs?

Where?

What is an MST?

NectarCAM deadtime fraction Method 2: $\delta_{deadtime} \times R$

What is an MST?

NectarCAM deadtime results

Results for the 3 sources and 2 methods

What is an MST?

NectarCAM deadtime results

Results for the 3 sources and 2 methods

What is an MST?

NectarCAM deadtime results Results for the 3 sources and 2 methods

Why MSTs?

Where?

What is an MST?

NectarCAM deadtime results

Results for the 3 sources and 2 methods

What is an MST?

NectarCAM deadtime results

Measurement vs MC simulations

FIFOs become main contributor of deadtime fraction above 15 kHz

NectarCAM linearity test Goal: to show that the light measured by the new FEBv6 is linearly proportional to the input light

TEST SETUP

FFCLS + EDMUND FILTERS

Illumination at same intensity with different filters

NECTARCAM

Federica Bradascio

Which parameters to check?

When?

NectarCAM linearity results

High gain, expect slope of 1

Low gain, expect slope of 1

NectarCAM read-out is linear at better than 5% in range [0.5 - 2000] p.e.

Overlap region between low and high gain channels: 20-300 p.e. (useful for cross calibration)

Linearity

NectarCAM vs FlashCam

Dynamic range 0.5 - 2000 p.e. obtained with 2 gain channels per pixel and linear amplifilication

Dynamic range **0.2–3000 p.e.** obtained with **1** channel per pixel and non-linear amplification

- 1. 2 Pathfinder telescopes for CTAN and CTAS
- 2. Manufacturing Readiness Review (MRR) of telescopes structure after the deployment of the first pathfinder telescope

3. Tendering of serial production units after MRR

- MST CTA School La Palma, June 2024

Take home messages

- Why MSTs? To detect γ -rays in middle energy range [100 GeV, 30 TeV] Where? 14 MSTs in CTAS and 9 MSTs in CTAN
- What is an MST?
 - Modified version of the Davies-Cotton design
 - Positioning to any point in the sky (>30° elevation) in 90 s
 - Two cameras: FlashCam (CTAS) and NectarCAM (CTAN)
 - Large field of view of about 8°
- How do they work?
 - FlashCam: fully-digital readout and trigger systems
 - NectarCAM: modular structure with analog trigger
- When? Soon :D -> in the meantime we test the cameras!

MST – CTA School – La Palma, June 2024

Backup

MST Structure Davies-Cotton Optics

PSF of three different telescope designs on "ideal" conditions and different offset angles. Red line represents the classic Davies-Cotton design, blue line represents the Modified DC and the green line represents the Hybrid DC design.

MST Structure Davies-Cotton Optics

PSF of three different telescope designs on "ideal" conditions and different offset angles. Red line represents the classic Davies-Cotton design, blue line represents the Modified DC and the green line represents the Hybrid DC design.

MST Structure **Davies-Cotton Optics**

The 3 Nearest Neighbours (3NN) algorithm When is an event recorded?

L1 signal is formed if 3 neighbour pixels or if 3 pixels within a 3ns time window are above a discrimination threshold within a 37-pixel region

MST – CTA School – La Palma, June 2024

Federica Bradascio

Significant amount of light is received in a compact region of the focal plane $(\sim 0.2 \text{ deg}^2)$

Principle of FlashCam operations

What is an MST?

Charge resolution NectarCAM vs FlashCam

NectarCAM PMT transit time

Transfer time of e^- avalanche in the PMT depending on dynodes HV

What is an MST?

PMT transit time correction

Before PMT transit time correction Normalized entries Mean = 20.50 ns RMS = 0.62 ns0.5 0.0 1500 Pixels 1000 $\Delta TOM_i = TOM_{correction}$ 500 18 20 22 24 26 16 TOM [ns]

TOMs are synchronised after correction

Why MSTs? Where? What is an MST?

After correcting for PMT transit time

<2 ns RMS between each pair of pixels \Rightarrow PMT transit time correction values updated in MC-simulations

Federica Bradascio

MST – CTA School – La Palma, June 2024

NectarCAM global camera timing precision

What is an MST?

Camera trigger timing precision NectarCAM trigger system

NectarCAM camera trigger timing precision

What is an MST?

MST — CTA School — La Palma, June 2024

Federica Bradascio

Why MSTs?

Where?