Medium Size Telescope

Federica Bradascio (CEA Paris-Saclay) CTA School - June 2024

MST

Federica Bradascio

BISSA WING AT

2

The Workhorse

. Large portion of the Observatory's energy range: 100 GeV - 30TeV

• Large field of view: ~8°

. Positioning to any point in the sky (>30° elevation) in 90 s

" Pointing precision of 7"

Why MST ? telescopes?

Why MSTs? Where? What is an MST? How do they work? Which parameters to check? When?

Why a Medium Size Telescope? To cover the energy range between 100 GeV and 30 TeV

AGN (e.g. M87)

MORPHOLOGICAL STUDIES

Where?

Structures funded by Spain

Where do we install MSTs?

CTAN

NectarCAM cameras

Mirrors from Italy

9 MSTs

FlashCam cameras

Structures funded by Germany and Poland

CTAS 14 MSTs

Mirrors from France and Poland

Why MSTs? **Where?** What is an MST? How do they work? Which parameters to check? When?

YOU ARE HERE!

What is an MST telescope?

MST Structure **Material**

- Made of steel
	- §To ensure sufficient stiffness
	- §No need for mirrors re-alignment for compensation of structure deformations during observations
- Total weight of 89 t

16 m

MST Structure Telescope optics

- Single mirror modified Davis-Cotton design
	- Reducing the dish-induced signal dispersion
	- Improve isochronicity of reflector
	- § Focusing of light over 80% FoV w/ RMS < 0.8 ns

Radius of curvature of each mirror (32.14 m) is x2 focal length

Federica Bradascio MST — CTA School — La Palma, June 2024

MST Structure

Optical Support Structure

COUNTER WEIGHT **STRUCTURE CAMERA** SUPPORT **STRUCTURE DISH STRUCTURE** POSITIONER HOUSING ALL ELECTRICAL CABINETS

-
- Holds camera in the reflector's focal plane
- Maintains the ideal spherical shape of mirror segments
- Reduces load on the telescope's elevation axis, balancing it properly
- Allows pointing and tracking of objects on the sky: $azimuthal + elevation$ movements
	- $-270^\circ <$ Azimuth $< +270^\circ$ 0° < Elevation < 91°

MST Structure Calibration system

POINTING CAMERA

to observe both the surrounding

SZIN

Wide FoV (26.5° x 17.8°), CMOS-based camera for pointing calibration and mirror alignment

MST mirrors

- 86 hexagonal-shaped with 1.2 m flat-to-flat side length to have effective mirror area ≥ 88 m² to cover energy range [150 GeV, 5 TeV]
- Radius of curvature of each mirror (32.14 m) is x^2 focal length $(r = 2f)$ to obtained a modified Davis-Cotton design
- Mirrors aligned to reflect rays parallel to the optical axis into the focal point
- Single mirror containment radius of ~0.06° to accurately reflects light to the focal point
- Lightweight (~18 kg each), with a low rate of reflectance loss

Al plate with honeycomb sandwich structure for enhanced stiffness

Federica Bradascio MST — CTA School — La Palma, June 2024

MST mirrors Obtained with "cold-slumping" technique

Mirror shape achieved by bending a thin glass sheet onto a mold with minimal thermal stress

Federica Bradascio MST — CTA School — La Palma, June 2024

MST mirrors Reflectivity > 85% in [300, 500] nm

Mirror facets coated with protective multilayer $(SiO₂, HfO₂/ZrO₂)$

FlashCam vs NectarCAM

CTAN 9 MSTs with NectarCAM

CTAS

14 MSTs with FlashCAM

Why MSTs? Where? **What is an MST?** How do they work? Which parameters to check? When?

147 Photon Detection Plane (PDP) modules

Provide high voltage to PMTs, pre-amplification and interface for slow control, monitoring, and safety functions

FlashCam Based on fully-digital readout and trigger systems

1764 vacuum PMTs + Winston cones

Formation of electrical signal + improved photon collection efficiency

FlashCam

WINDOW AND **SHUTTER**

 \sim

Why MSTs? Where? What is an MST? How do they work? Which parameters to check? When?

ELECTRONICS RACKS

READOUT AND CONTROL ELECTRONICS

MECHANICAL STRUCTURE/ THERMAL INSULATION

FlashCam

First flight on the MST structure in Adlershof (Berlin) in September 2017

Successfully installed on H.E.S.S.—CT5 in Oct 2019 Regularly taking data with uptime of ~98%

NectarCAM Modular structure with 265 7-pixels modules

Why MSTs? Where? What is an MST? How do they work? Which parameters to check? When?

Federica Bradascio MST — CTA School — La Palma, June 2024 22

Why MSTs? Where? What is an MST? How do they work? Which parameters to check? When?

NectarCAM mechanics

Built from independent units for construction and integration flexibility

CENTRAL ASSEMBLY PRIMARY LOAD BEARING COMPONENT, COOLING SYSTEM

FRONT ASSEMBLY

CAMERA ENTRANCE APERTURE, FOCAL PLANE

TRIGGER AND DATA ACQUISITION SUBSYSTEMS

Federica Bradascio MST — CTA School — La Palma, June 2024

Why MSTs? Where? **What is an MST?** How do they work? Which parameters to check? When?

NectarCAM

First prototype installed on the MST structure in Adlershof (Berlin) in May 2019

FlashCam vs NectarCAM Main differences are the electronics and trigger designs

- Field of view of 7.5°
- Rack based electronics
- Separation between γ detection and electronics/processing
- "Off-the-shelf" components
- Non-linear amplification of P.E. current
	- 1 gain channel
	- Dynamic range of 0.2 3000 p.e.
	- 12-bit continuous digitization at 250 MHz
- Fully digital trigger form directly on data
- 128 ns waveforms to camera server
- Field of view of 7.7°
- Integrated modules
- Electronics mounted on phototubes
- **A**pplication **S**pecific **I**ntegrated **C**ircuits
- Linear amplification of P.E. current
	- 2 gain channels
	- Dynamic range of 0.5—2000 p.e.
	- 1GHz sampler+digitizer (NECTAr)
- Independent trigger channel
- Waveform integration window of 1—60 ns

How do we measure Cherenkov photons? The case of NectarCAM

From photons to photoelectrons Impact of components on Cherenkov light detection efficiency

ENTRANCE WINDOW

LIGHT GUIDES

HAMAMATSU PMT

From photons to photoelectrons Formation of the electric signal

FOCAL PLANE MODULE FRONT END BOARD (FEB)

1. Light deposited in the camera is first collected in the **light guides** and detected in the focal plane

WINSTON CONES

Formation of the electric signal From photons to photoelectrons

Federica Bradascio 28

FOCAL PLANE MODULE FRONT END BOARD (FEB)

Federica Bradascio MST — CTA School — La Palma, June 2024 29

FOCAL PLANE MODULE FRONT END BOARD (FEB)

2. The signal is converted into electric signal by the **PMTs** and pre-amplified towards 2 gain channels: High Gain and Low Gain channels

Formation of the electric signal From photons to photoelectrons

PMTS

3. The signal is amplified again in the **ACTA amplifiers** and splitted into 3 channels: low and high gain channels and trigger channel

Formation of the electric signal From photons to photoelectrons

ACTAS

FOCAL PLANE MODULE FRONT END BOARD (FEB)

Trigger signal

4. The HG and LG signals are sampled at 1 GHz in the **NECTAr chips** → acts as a circular buffer which holds 500 ns of data until camera trigger occurs

FOCAL PLANE MODULE FRONT END BOARD (FEB)

Formation of the electric signal From photons to photoelectrons

NECTAR CHIPS

Trigger signal FOCAL PLANE MODULE FRONT END BOARD (FEB)

5. The **L0 ASICS** processes analog signals from each PMT, comparing them to a threshold; if exceeded, it generates a digital L0 signal

Formation of the electric signal From photons to photoelectrons

L0 ASICS (IN THE BACK OF THE FEB)

6. When a trigger is formed, sampling is stopped, data are readout, digitised in a 12-bit ADC and sent to the camera server by Ethernet

Formation of the electric signal From photons to photoelectrons

FOCAL PLANE MODULE FRONT END BOARD (FEB)

6. When a trigger is formed, sampling is stopped, data are readout, digitised in a 12-bit ADC and sent to the **camera server** by Ethernet

FOCAL PLANE MODULE FRONT END BOARD (FEB)

Formation of the electric signal From photons to photoelectrons

The NectarCAM Trigger From the single pixels to a camera trigger

Significant amount L0 trigger LO neighbour of light in min J neighbour 3 pixels FEB L0 L1 L1 \blacksquare L0 neighbour **NECTAr** LO neighbour DTB chips

Sampling in the NECTAr chips is stopped and data readout

Why MSTs? Where? What is an MST? How do they work? Which parameters to check? When?

PMT waveform

How a signal looks like in a pixel

Which parameters we need to calibrate? Some examples…

Light sources of NectarCAM In the testbench at CEA Paris-Saclay

Why MSTs? Where? What is an MST? How do they work? Which parameters to check? When?

NectarCAM timing performance Precise timing information to combine Cherenkov light from all

telescopes and accurately reconstruct the showers

TEST SETUP

Illumination at different intensities

Single pixel timing precision Why MSTs? Where? What is an MST? How do they work? Which parameters to check? When? NectarCAM timing performance

Federica Bradascio 40 MST — CTA School — La Palma, June 2024

CTA requirement: < 2 ns RMS for an incoming light of intensity > 20 γ (= 5 p.e.)

Federica Bradascio 41 MST — CTA School — La Palma, June 2024

NectarCAM deadtime

A new NECTAr chip to reduce the deadtime

- The current NECTAr chip readout dominates the deadtime ~5% at 7kHz
- The new FEB (version 6) uses a new NECTAr chip which can run in *pingpong* mode
- This reduces the deadtime by an order of magnitude

Deadtime tested at IRFU with ~10 preseries FEBv6

Federica Bradascio MST — CTA School — La Palma, June 2024

NectarCAM deadtime fraction Method 2: δ deadtime \times R

FIFOs become main contributor of deadtime fraction above 15 kHz

Measurement vs MC simulations

NectarCAM linearity test Goal: to show that the light measured by the new FEBv6 is linearly proportional to the input light

TEST SETUP

FFCLS + EDMUND FILTERS

NECTARCAM

Illumination at same intensity with different filters

NectarCAM linearity results

NectarCAM read-out is linear at better than 5% in range [0.5 — 2000] p.e.

Why MSTs? Where? What is an MST? How do they work? Which parameters to check? When?

Overlap region between low and high gain channels: 20-300 p.e. (useful for cross calibration)

High gain, expect slope of 1

Low gain, expect slope of 1

Linearity

NectarCAM vs FlashCam

Dynamic range 0.2—3000 p.e. obtained with 1 channel per pixel and non-linear amplification

Dynamic range 0.5—2000 p.e. obtained with 2 gain channels per pixel and linear amplifiIication

-
- Federica Bradascio MST CTA School La Palma, June 2024 53
- 1. 2 Pathfinder telescopes for CTAN and CTAS
- 2. Manufacturing Readiness Review (MRR) of telescopes structure after the deployment of the first pathfinder telescope

3. Tendering of serial production units after MRR

Federica Bradascio MST — CTA School — La Palma, June 2024

Take home messages

- Why MSTs? To detect y-rays in middle energy range [100 GeV, 30 TeV] • Where? 14 MSTs in CTAS and 9 MSTs in CTAN
-
- What is an MST?
	- Modified version of the Davies-Cotton design
		- Positioning to any point in the sky (>30° elevation) in 90 s
	- Two cameras: FlashCam (CTAS) and NectarCAM (CTAN)
		- Large field of view of about 8°
- How do they work?
	- FlashCam: fully-digital readout and trigger systems
	- NectarCAM: modular structure with analog trigger
- When? Soon : $D \rightarrow$ in the meantime we test the cameras!

Backup

MST Structure Davies-Cotton Optics

PSF of three different telescope designs on "ideal" conditions and different offset angles. Red line represents the classic Davies-Cotton design, blue line represents the Modified DC and the green line represents the Hybrid DC design.

MST Structure Davies-Cotton Optics

PSF of three different telescope designs on "ideal" conditions and different offset angles. Red line represents the classic Davies-Cotton design, blue line represents the Modified DC and the green line represents the Hybrid DC design.

MST Structure Davies-Cotton Optics

Federica Bradascio MST — CTA School — La Palma, June 2024 59

The 3 Nearest Neighbours (3NN) algorithm When is an event recorded?

Significant amount of light is received in a compact region of the focal plane (-0.2 deg^2)

L1 signal is formed if 3 neighbour pixels or if 3 pixels within a 3ns time window are above a discrimination threshold within a 37-pixel region

Principle of FlashCam operations

Charge resolution NectarCAM vs FlashCam

NectarCAM PMT transit time

Transfer time of e^- avalanche in the PMT depending on dynodes HV

Why MSTs? Where? What is an MST? How do they work? Which parameters to check? When?

PMT transit time correction

TOMs are synchronised after correction

Federica Bradascio MST — CTA School — La Palma, June 2024

<2 ns RMS between each pair of pixels \Rightarrow PMT transit time correction values updated in MC-simulations

NectarCAM global camera timing precision

Why MSTs? Where? What is an MST? How do they work? Which parameters to check? When?

After correcting for PMT transit time

Camera trigger timing precision NectarCAM trigger system

Why MSTs? Where? What is an MST? How do they work? Which parameters to check? When?

Federica Bradascio MST — CTA School — La Palma, June 2024 66

NectarCAM camera trigger timing precision

