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This is very well, but how do we know all this?
Abdollahi et al 2020, ApJS 247, 33 (4FGL)



What problem do we want to address?

When a γ-ray source is found by chance, how do we associate it with what we 

know from other wavelengths?

 Applies to surveys (Fermi-LAT, eROSITA, CTA Galactic and extragalactic surveys)

 Critical for population studies and physical modelling

 Probabilistic approach

 Long history, first concepts date back to the 1970s for first radio surveys

 Often called cross-match in the literature

 Some concepts can apply to pointed observations when you want to assess the 

probability that what you see comes from a more common source class (e.g. blazars) 

than what you are looking for

 Of little use for extended sources, unfortunately
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What information do we need?

What quantities do we expect will matter to this problem?

1. How well we localized the γ-ray source (the localization precision). In other contexts 

the localization precision of the counterparts may matter too (assume negligible here)

2. How many potential counterparts we consider (the counterpart density)

3. The plausibility that those counterparts emit γ-rays (not the same for stars and blazars). 

If possible, this is handled before, by selecting classes of sources that we know

collectively emit γ-rays (blazars, pulsars)

4. The individual properties of the counterparts (flux, spectrum, …)

Let us put that into equations
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Probabilistic framework

We want to compare two hypotheses:

1. H0: A putative counterpart is close to a γ-ray peak by chance

2. H1: The putative counterpart is actually the same as the γ-ray source

We will adopt a Bayesian approach:   Pr{M|D} = Pr{M} Pr{D|M} / Pr{D}

where Pr(D) is just a normalization constant
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How do we get the localization precision?

The instrument’s Point Spread Function (PSF) is the key ingredient

1. If the PSF is the same for all events (not energy dependent, in particular), with dispersion σ

along one axis, then the dispersion of the average over N events is σ / √N

2. For many counts, the compound localization will converge to a Gaussian (central-limit 

theorem) of the same dispersion

3. In general, (not the same PSF for all events) the localization precision will be obtained from 

the logLikelihood using Wilks’ theorem. Assuming that the source is truly at position rT,     

Δ = 2 ln(Lmax/LT) is distributed as χ²(2 dof) when the 2D position is fitted to the data. 

Particularly simple F(Δ) = 1 – exp(–Δ/2). 

Related to TS = 2 ln(Lmax/L0) used for assessing the significance of a source
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How do we get the probability density under H1?

Definition of the localization error

1. Remember that F(Δ) = 1 – exp(–Δ/2) with Δ = 2 ln(Lmax/LT)

2. The likelihood contours are not necessarily symmetrical (either due to instrumental characteristics or to 

background features such as other nearby sources) but again for enough counts the tip converges to a 

Gaussian propto exp(–(r/σ)2/2), lnL becomes a 2D paraboloid and the contours converge to ellipses. 

95% confidence contours: Δ = –2 ln(0.05) = – (R95/σ)2 so R95 = √(–2 ln(0.05)) σ ≈ 2.45 σ

3. Under H1, in the simplest case of an error circle, the probability density of the distance between the γ-

ray peak and the counterpart is fT(r) = r/σ2 exp(–(r/σ)2/2)

r = ||rP – rT|| is viewed as a random variable in rP (γ-ray peak when the counterpart is known)

We neglect here complications related to the sphericity of the sky
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How do we get the probability density under H0?

In general, we start from a catalog of counterparts

1. Under H0, if the counterpart density ρ is reasonably constant (for example AGN outside the 

Galactic plane), then, noting r the 2D distance to any point in the sky, dN/dr = 2πrρ

2. As long as all counterparts are considered equal, we will consider the nearest one

3. The probability of finding the nearest neighbor at x is p(x) = Pr{N(r<x)=0}. We can write 

p’(x) = 2πxρ p(x) so that p(x) = exp(–πx2ρ)

4. Under H0, the probability density of the distance to the closest counterpart is fR(r) = –p’(r) so

that fR(r) = 2πrρ exp(–πr2ρ)

5. To get there, we need the catalog to be complete (at a given flux limit). If the detection rate 

varies over the sky (e.g. AGN through the Galactic plane), it must be accounted for.

We assume in the following that the local counterpart density ρ can be obtained
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Likelihood ratio

We compare the two probability densities (random and true)

1. H0: fR(r) = 2πrρ exp(–πr2ρ)

2. H1: fT(r) = r/σ2 exp(–(r/σ)2/2)

3. The likelihood ratio is LR 𝑟 =
𝑓T 𝑟

𝑓R 𝑟
=

1

2𝜋𝜚𝜎2
exp 𝜋𝜌𝑟2 −

𝑟2

2𝜎2

4. There is no free parameter here: σ comes from the logLikelihood contours (specific to 

each source), ρ is assumed known (but can depend on direction in the sky) and r is 

simply the distance between the γ-ray peak and the counterpart (observed quantity).

5. No hope to ever find a reliable counterpart if K = 2πρσ2 > 1. In that case (one random 

counterpart on average in R68) LR does not even decrease with r.

6. The likelihood ratio provides a ranking between associations (over a full catalog) but not 

a probability
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Association probability

In the Bayesian approach, we must consider the a priori probabilities

1. A priori Pr{H1} and Pr{H0} such that Pr{H1}+Pr{H0}=1 and Γ=Pr{H1}/Pr{H0}

2. A posteriori Pr 𝐻1 𝑟 =
Pr 𝐻1 𝑓T 𝑟

Pr 𝐻1 𝑓T 𝑟 +Pr 𝐻0 𝑓R 𝑟
=

1

1+ Τ1 Γ LR(𝑟)

3. At this point Pr{H1} and Pr{H0} (or Γ) are not known yet.

Only spatial characteristics (ρ and σ) are considered for now.
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Thresholding

We want to define a probability threshold

1. A counterpart is considered safe if Pr 𝐻1 𝑟 =
1

1+ Τ1 Γ LR(𝑟)
> 𝛽

2. Equivalent to LR 𝑟 =
1

2𝜋𝜚𝜎2
exp 𝜋𝜌𝑟2 −

𝑟2

2𝜎2
>

1

Γ Τ1 𝛽−1
= 𝛼

3. Or to  
𝑟

𝜎
< −

2 ln 𝐾𝛼

1−𝐾
where K = 2𝜋𝜚𝜎2

4. No association can be found if K > 1 (already seen) or K > 1/𝜶, if 𝜚 is too large. Usually 

𝜶 > 1 so the second condition is more stringent.

5. The r/σ threshold depends only on α, not separately on Γ and β. It decreases with K and α 

so sources will be accepted at larger r/σ for smaller 𝜚, larger Γ and smaller β

6. Ex: β = 0.8, Γ = 1/2, 𝜚 = 1/sq deg α = 8. Association possible if σ < 0.141°.
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Catalog of γ-ray sources

We are now considering entire catalogs

1. We work with a catalog of M γ-ray sources indexed by i, with localization precision σi

2. We note  𝑝𝑖 = Pr 𝐻1 𝑟𝑖 =
1

1+ Τ1 Γ LR(𝑟𝑖)
. Good association if pi > β

3. Remember that the threshold in r/σ depends only on α, not separately on Γand β. So we can 

decide that we will set β to 0.8, say (the same for all counterpart catalogs), and it remains to 

choose Γ (separately for each counterpart catalog).

The localization of counterparts is assumed to be better than the γ-ray localization (in general, a 

few arcsecs vs a few arcmins) and we consider only the closest one in this simple approach
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False associations

How many false associations do we expect?

1. For each source such that pi > β, the number of false associations is a random variable Fi whose 

value is either 0 or 1.

2. In this framework the distance ri is not a random variable but an observed quantity and the 

localization error σi is known from the logL contours. So Fi is a simple Bernoulli variable with 

probability 1 – pi . Its expectation is ET(Fi) = 1 – pi and its variance is VT(Fi) = pi (1 – pi)

3. The total number of false associations is F = Σ{pi>β} Fi . Its expectation is ET(F) = Σ{pi>β} (1–pi)

and the sources are independent so its variance is VT(F) = Σ{pi>β} pi(1–pi)

4. By construction all pi > β so β ET(F) < VT(F) < ET(F), close to the Poisson regime V(F) = E(F)

5. pi depends on the a priori probability ratio Γ, so the expected number of false associations is a 

function of Γ. When Γ << 1 (H1 very unlikely), pi < β for all sources so ET(F) = 0 . When Γ >> 1 

(H1 very likely), pi 1 for all sources so ET(F) = 0 too. ET(F) reaches a maximum for moderate Γ
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False associations 2

How many false associations do we expect?

1. We can also estimate the number of false associations in a different manner, either by simulations 

(move the γ-ray sources, apply the procedure and count) or by a simple surface estimate.

2. In this framework the distance ri is again the random variable in H0 so that the cumulative 

probability of having one random counterpart within ri is FR(ri) = 1 – exp(–πri
2ρ). 

3. Accept associations up to 𝑟𝑖
max = 𝜎 −

2 ln 𝐾𝑖 𝛼

1−𝐾𝑖
where Ki = 2𝜋𝜚𝜎i

2 and α = 1/(Γ(1/β–1))

4. Expected number of false positives  𝐸𝑅 𝐹𝑖 = 𝐹𝑅 𝑟𝑖
max = 1 − exp

𝐾𝑖 ln 𝐾𝑖 𝛼

1−𝐾𝑖

5. Summed over all sources  ER(F) = Σ FR(ri
max) restricted to Ki < min(1,1/α) 

6. Ki does not depend on Γ, and α decreases with Γ, so ER(F) increases with Γ from 0 to M
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Defining the prior probability

We must reconcile the two estimates of false associations

Writing  ER(F) = ET(F) results in an equation over Γ or Pr{H1} that can be solved numerically
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Example of such curves

Scale for false associations is at left

Black curve (with scale at right) is the total number

of associations

The correct choice of Pr{H1} is where the red and 

blue curves intersect, at Pr{H1} ≈ 1/3 or     Γ ≈ 1/2

This means that we expect about 1/3 of the γ-ray 

sources to be among those counterparts

The reliability R (called precision in statistics) is 

the fraction of true associations among accepted 

ones R = 1 – ET(F)/Nassoc



True associations

How many true associations do we expect?

1. The number of true associations is also a random variable Ti whose value is either 0 or 1.

2. Ti is again a simple Bernoulli variable with probability pi . Its expectation is E(Ti) = pi and its 

variance is V(Ti) = pi (1 – pi)

3. The total number of true associations among the accepted sources is Tacc = Σ{pi>β} Ti . Its 

expectation is E(Tacc) = Σ{pi>β} pi and its variance is V(Tacc) = Σ{pi>β} pi(1–pi) = VT(F)

4. By construction all pi > β so 0 < V(Tacc) < (1-β) E(Tacc), way below Poisson regime V(F) = E(F)

5. The total number of true associations is Ttot = Σ Ti . Its expectation is E(Ttot) = Σ pi

6. The completeness C (called recall in statistics) is the fraction of accepted true associations among 

all true associations and can be estimated as E(Tacc) / E(Ttot) 
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The Rayleigh distribution

We must quantify the quality of the procedure

The distribution of distances r differs for each source but that of r/σ is always the same  

fT(r/σ) = x exp(–x2/2) : Rayleigh distribution (2D Gaussian in polar coordinates)

19/06/2024 Jean Ballet, CTA summer school 17

Example on real sources

The black histogram is the observed

distribution of r/σ

The curve is the Rayleigh distribution 

normalized to the number of sources

They can be compared by a 

Kolmogorov-Smirnov test

This example is not perfect. The 

histogram has a distinct tail, implying

that something could be improved



Chasing systematics

What can explain a tail in the observed distribution of r/σ?

1. In general, the culprit is our estimate of the localization precision σ

2. It can be wrong in two ways:

• An absolute systematic error σabs (due to imperfect knowledge 

of the pointing direction) will affect the bright sources and can 

be checked by looking at bright known sources

• A relative systematic error frel (due to confusion or background 

modeling) will affect all sources. frel can be fit to optimize the 

Rayleigh plot

3. Combined as σtot
2 = (frel σ)2 + σabs

2
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Elliptical errors

How to go beyond a simple error circle?

1. In general, the localization region is an ellipse defined by two 

errors σ1 and σ2 and an angle θ (can be wrt North or West)

2. In that case, the counterpart position C wrt the γ-ray source P must 

be expressed in the ellipse axes  (d1, d2)

3. The previous formulae can then be used, replacing σ by √(σ1 σ2)

and (r/σ)2 by (d1/σ1)
2 + (d2/σ2)

2
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σ1
σ2

C

d1

d2

P



Counterparts in large catalogs

How can we do when the counterpart density is too large?

1. An often-used method is to consider the counterpart flux Sk

2. The idea then is to define the source density only from those sources with flux no less than Sk

ρk = N(S ≥ Sk) / Ω (it should ideally be differential at Sk, not addressed here)

3. The likelihood ratio can then be expressed, replacing ρ by ρk , except that we will now check all 

possible pairs, LRik = exp(–(rik/σi)
2/2) / (2πρkσi

2) (no nearest neighbor term in exp)

4. We will then consider for each γ-ray source the counterpart with the largest likelihood ratio 

instead of the nearest neighbor:  LRi = maxk LRik

5. It is not so easy to define a global a priori probability Pr{H0}
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Ackermann et al 2011, ApJ 743, 171 (2LAC)

Reliability in likelihood ratio method
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How can we go further?

1. We can try to estimate the distribution of LR under H0 by 

simulating γ-ray sources randomly (but with a similar 

spatial distribution)

2. It is then possible to obtain from the true and the random 

LR distributions a reliability. Noting NT and NR the 

numbers of sources in a given log(LR) bin we define

R 𝐿𝑅 =
1

1+ Τ𝑁𝑅 𝐿𝑅 𝑁𝑇 LR

3. This is an approximate probability of association. It is 

noisy (because NT is noisy) so it must be approximated by 

some analytic function.



Adding other criteria

Can we use other counterpart characteristics?

1. Yes. In the likelihood ratio method we can multiply the spatial term S by other terms (other data)

2. In the Bayesian formalism, Pr{D|M} = Pr{S|M} x Pr{C|M} (actually probability densities)

3. We must know the distributions of the secondary quantity C under H0 and H1

4. The distribution of C under H0 is taken from that of the full counterpart catalog

5. The distribution of C under H1 is taken from a subset of “sure” identifications (not so easy)

6. Can be easily generalized to multiple characteristics
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Complications

Modern association tools

1. The localization precision of the counterparts must be accounted for (symmetric formulation)

2. Several counterpart catalogs must be handled together

3. The counterparts must be associated between themselves (in general they are better localized so we 

know whether an X-ray source is the same as an optical source or not)

4. Some sources can be absent at a particular wavelength simply because this source class emits little 

there (eg pulsars in the optical)

Implemented in the NWAY package by Mara Salvato et al (developed for eROSITA)
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https://github.com/JohannesBuchner/nway


Handling Galactic sources

The Galactic plane is much more complex

1. The number of potential classes of emitters is much larger

2. The density of counterparts varies (latitude, distance to GC, spiral arms) so it must be 

estimated locally, for example via kernel density estimation

3. When the density of counterparts becomes too large locally (as explained before), it can 

become advantageous to consider them collectively (for example, star-forming regions 

rather than individual young stars, globular clusters rather than individual MSPs)

4. Galactic absorption/extinction biases the counterpart catalogs at many wavelengths (soft 

X-rays, optical/UV) whereas γ-ray sources are negligibly absorbed

5. Because of all that, care must be taken when simulating fake γ-ray sources to preserve 

their spatial distribution
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https://en.wikipedia.org/wiki/Kernel_density_estimation


Handling extended sources

Extended sources cannot fit into this probabilistic framework

1. Extended here means the radius R is larger than the localization error (not only 

larger than the PSF). Can be the same source even though the centroid is a little off, 

because the relative weights of emission regions inside the extended source can differ 

at different wavelengths

2. Many more parameters come into play: counterpart size (PWN, SNR) Rctpt, the γ-ray 

size (when it can be measured) Rgam, the γ-ray localization (as before) R95 (95%)

3. Majority of Galactic TeV sources, unfortunately

4. When you find an extended source, look at images first! You can get images of the sky 

at many wavelengths from NASA’s SkyView.

5. The Manitoba catalog (Ferrand & Safi-Harb 2012, AdSpR 49, 1313) is a good 

resource to look into 
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https://skyview.gsfc.nasa.gov/current/cgi/titlepage.pl
http://snrcat.physics.umanitoba.ca/


Handling extended sources 2
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Can we attempt to quantify this anyway?

1. Yes, sort of

2. Location: 𝑂loc =
𝑆ctpt ∩ 𝑆95

min 𝑆ctpt , 𝑆95
> 𝑂min

3. Extension: 𝑂ext =
𝑆ctpt ∩ 𝑆gam

min 𝑆ctpt , 𝑆gam
> 𝑂min

4. Omin set to 0.5 or so

5. Estimate reliability from simulations

Acero et al 2016, ApJS 224, 8 (SNRCat) 
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Conclusions

1. Well established framework for point sources

2. Statistical estimate of false and missed associations 

3. Can accommodate source density, flux, other quantities

4. Extended sources more uncertain
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