

RELATIVISTIC COLLIMATED OUTFLOWS

Matteo Cerruti

CTAO School June 18, 2024

Université Paris Cité Astroparticule et Cosmologie (APC)

WHAT ARE JETS?

Collimated outflows seen in different sources and at different scales

Active Galactic Nuclei

WHAT ARE JETS?

Collimated outflows seen in different sources and at different scales

Micro quasars

WHAT ARE JETS?

Collimated outflows seen in different sources and at different scales

Young stellar objects

HOW DO WE STUDY JETS?

Multi-wavelength observations

The Jet of M87 in radio, visible, X-ray

HOW DO WE STUDY JETS?

Relativistic Magneto-hydrodinamic (MHD) simulations (+ GR if you want to study jet launching close to the black hole)

HOW DO WE STUDY JETS?

Laboratory astrophysics

430ns

400ns

shock

Matteo Cerruti

340ns

310ns

Suzuku-Vidal 2015

370ns

DOPPLER BOOSTING

This is the same factor that enters into the time dilation and length contraction formulae:

$$t = \Gamma t'$$
$$x = \frac{x'}{\Gamma}$$

DOPPLER BOOSTING

JET / COUNTER-JET

Observations

Relative Right Ascension (arcsec)

0
15
10
5
0
-5
-10
-15

PKS 0637-752, Godfrey 12
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
<td

JET / COUNTER-JET

For a receding jet:

$$\delta = \frac{1}{\Gamma(1 + \beta \cos \theta)}$$

And so the flux ratio is
$$\frac{F_{jet}}{F_{counter-jet}} = \left(\frac{1+\beta\cos\theta}{1-\beta\cos\theta}\right)^{3}$$

Exemple: if we measure a flux ratio of 1000, Assuming $\Gamma = 10 \rightarrow \beta = 0.995$

We get $\theta = 35^{\circ}$

SUPERLUMINAL MOTION

Observations

The right knot has a projected displacement of 25 light years during 1991-1998!

SUPERLUMINAL MOTION

In frame K: $AB = \beta c \Delta T$ In B the knot moved towards us by С c∆t_e $\beta c \Delta T \cos \theta$. The time needed for the signal to reach us is ₹D $\Delta T - \beta c \Delta T \cos \theta / c = \Delta T - \beta \Delta T \cos \theta$ The inferred velocity of the projected $\frac{\beta c \Delta T \sin \theta}{\Delta T - \beta \Delta T \cos \theta}$ component is β 1.0 0.8 0.6 This can be > c if β > $\frac{1}{\sin \theta + \cos \theta}$ 0.4 0.2

KNOTS

Monitoring of features over several years Moving vs standing knots

Weaver 22

KNOTS

New ejections and trailing knots

Weaver 22

JET PROFILE AND COLLIMATION

What is the jet shape? Far away it looks conical or even cylindrical Close to the black hole we see parabolic to conical transition

16

3C84, Giovannini 18

JET PROFILE AND COLLIMATION

What is the jet shape? Far away it looks cylindrical Close to the black hole we see conical and parabolic sections

Kovalev 20

RECOLLIMATION SHOCKS

Are stationary features recollimation?

RECOLLIMATION SHOCKS

Simulations

Nishikawa 13

Mizuno 15

DECELERATION

How does the jet end? - Deceleration and disruption

TERMINATION SHOCKS

How does the jet end? - Termination shock

TERMINATION SHOCKS

How does the jet end? - Termination shock

Horton 23

JET and OBSTACLES

The jet interacts with its environment It has to collide with clouds and stars in the galaxy

Observational evidences Simulations

S5 1044+719, Kun 23

PRECESSION

OJ 287 & binaries

25

JET UNIFICATION

A fundamental plane connecting jets at various scales

Merloni 03

MICRO QUASARS

HISTORY

Follow up of bright X-ray sources in the Milky Way First observations of jets that 'look like' quasars

HISTORY

Confirmed by the discovery of superluminal motions

WHAT IS A MICROQUASAR?

X-ray binary with radio jet

N.B. not all binaries are microquasars!

X-RAY EMISSION FROM MICROQUASARS

X-ray spectra from micro quasars

MWL EMISSION FROM MICROQUASARS

DIFFERENT STATES

Fender 04

GAMMA-RAYS FROM MICROQUASARS

Nine binaries known in the TeV band, but the emission is likely *not* associated with the jet

LS I +61 303	02 40 34	+61 15 25	Gal,BIN	2.0 kpc	Default Catalog
LMC P3	05 36 00	-67 35 11	Gal,BIN		Default Catalog
HESS J0632+057	06 33 00.8	+05 47 39	Gal,BIN	1.4 kpc	Default Catalog
HESS J1018-589 A	10 18 58	-58 56 43	Gal,BIN		Default Catalog
Eta Carinae	10 44 35	-59 39 56.6	Gal,BIN	2.3 kpc	Default Catalog
PSR B1259-63	13 02 49.3	-63 49 53	Gal,BIN	2.7 kpc	Default Catalog
LS 5039	18 26 15	-14 49 30	Gal,BIN	2.5 kpc	Default Catalog
HESS J1832-093	18 32 50	-09 22 36	Gal,BIN		Default Catalog
SS 433 w1	19 10 37	+05 02 13	Gal,BIN	4.5 kpc	Default Catalog
SS 433 e1	19 13 37	+04 55 48	Gal,BIN	5.5 kpc	Default Catalog
PSR J2032+4127	20 32 10	+41 27 34	Gal,BIN	1.8 kpc	Default Catalog

These sources will be covered tomorrow by P. Bordas

SS 433

Microquasar embedded in the supernova remnant W50

4

Distance: ~5.5 kpc Location: 19h11m +04d58m Central Object: black hole with 3-30 solar masses Companion Star: A-type Period: 13d Precession: 162.5 days

SS 433

Zooming in on the microquasar

X-ray emission

GeV emission

No LAT source associated with the X-ray jets. A surprising source offset from the jets, and in phase with the precession period

Extended TeV emission detected with HAWC

Abeysekara 18

TeV emission with HESS

LAT emission detected during the hard state Evidence of orbital variability implies contribution from external photons (from the companion)

40

36

32 28

24

20 ≌

16

12

Zanin 16

Evidence (3.2σ) for flaring activity in MAGIC data

MAGIC 06

Distance: ~7.4 kpc Location: 20h32m +40d57m Central Object: compact object with 1.3-4.5 solar masses Companion Star: WR-type Period: 4.8h

46

Point-like source of photons in galaxy center

The brightest ones can outshine the galaxy itself (=quasar)

Arevalo et al. 2005

Current understanding

effect of accretion of matter onto a super-massive black hole

Event Horizon Telescope 2019

First image of a blackhole shadow

Event Horizon Telescope 2020

Jet launching

Radio-loud / radio-quiet dichotomy

Radio-galaxy with its relativistic jet

Seyfert galaxy

Broad-band emission from Seyfert galaxies

Radio-loud dichotomv: Fanaroff-Rilev I and FRII

Leahy & Perley 1991

Radio-galaxies SED

Blazars: radio-loud Active Galactic Nucleus whose relativistic jet points towards the observer

emission from the jet outshines all other AGN components (disk, BLR, X-ray corona, ...)

non-thermal emission from radio-to-gamma-rays, and extreme variability

Flat-spectrum-radio-quasars : optical spectrum with broad emission lines BL Lacertae objects : optical spectrum is featureless (lines $EW < 5 \text{\AA}$)

FSRQs and BL Lac spectra

Shaw et al. 2012

Spectral energy distribution (SED): two separate components

FSRQs show a peak in IR

BL Lac objects are classified in:

peak in IR: low-frequency peaked (LBLs)

- peak in optical: intermediate (IBLs)
- peak in UV / X: high (HBLs)

THE GeV EXTRAGALACTIC SKY

THE GeV EXTRAGALACTIC SKY

Matteo Cerruti

THE GeV EXTRAGALACTIC SKY

Population of GeV AGNs

Dominated by high-luminosity FSRQs and LBLs

Blazars are extremely variable

Abdo et al. 2011

Rapid flares

5-min. bin

3-min. bin

15

Matteo Cerruti

Periodicity and Quasi-Periodic-Oscillations

Ackermann et al. 2015

Zhou et al. 2018

Matteo Cerruti

Super-massive black-hole Binary

Helical structure of the jet

Britzen et al. 2017

Zhou et al. 2018

NARROW LINE SEYFERT 1

Narrow-line Seyfert 1 galaxies

Seyfert galaxies with unusual optical spectrum Some of them show a jet and gamma-ray emission (when flaring) -> low-mass version of FSRQs?

THE TeV EXTRAGALACTIC SKY

http://tevcat2.uchicago.edu

98 extragalactic sources: 5 GRB

- 2 starburst galaxies
- 1 low-luminosity AGN
- 4 radio galaxies
- **86 blazars**

THE TeV EXTRAGALACTIC SKY

Population of TeV AGNs

Dominated by HBLs:

57 HBLs 9 IBLs 2 LBLs 10 FSRQ (8 unclear)

FSRQs and LBLs

Origin of γ -ray emission: External-Inverse-Compton

The external field also acts as an absorber via γ - γ pair-production

The detection of VHE photons can be used to constrain the location of the emitting region!

FSRQs and LBLs

First detection of a VHE FSRQ in a non-flaring state!

MAGIC Collaboration et al. 2018

FSRQs and LBLs

Matteo Cerruti

Po

57066 57068 57070 57072 57074 57076 57078 57080

MID

57082

EXTREME BLAZARS

If the peak is beyond soft X-rays $(\nu \ge 10^{17} \text{ Hz})$, we talk about extreme-HBLs

Archetypal EHBL: 1ES0229+200

But not all EHBLs have a hard TeV spectrum! The population seems more heterogeneous (Foffano et al. 2019 Costamante 2019)

EXTREME BLAZARS

IceCube-170922A / TXS 0506+056

Most significant association (3σ) of a high-energy (290 TeV) neutrino with an astrophysical source

TXS 0506+056: THE 2017 FLARE

TXS 0506+056: THE 2017 FLARE

Lepto-hadronic solutions

They can work: neutrino rates of the order of 0.1 / yr

But rather high energetic requirement : $L_{jet} \gg L_{Edd} \simeq \times 10^{46-47} \ erg/s$

TXS 0506+056: THE 2017 FLARE

Proton-photon interaction on external photon fields

WHAT HAPPENED SINCE 2017?

FLARE OF PKS 0735+178 / IC211208A

RADIO GALAXIES - Centaurus A

Not variable! Unique spectral hardening at TeV Extended!

GAMMA-RAY BURSTS

Discovered by militaries during cold war

OBSERVATIONS OF GAMMA-RAY BURSTS OF COSMIC ORIGIN

RAY W. KLEBESADEL, IAN B. STRONG, AND ROY A. OLSON

University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico Received 1973 March 16; revised 1973 April 2

Classification

Shahmoradi 15

Credit NASA /GSFC

First afterglow detection: GRB 970228

WHAT ARE GRBs?

Should come with a kilonova, an optical transient powered by decay of elements formed through rapid neutron capture (r-process).

Should come with a corecollapse supernova

WHAT ARE GRBs?

Prompt and afterglow

PROMPT PHASE SPECTRA

Prompt spectra are well fitted by a smoothly broken power law (Band function, see Band 93)

AFTERGLOW EVOLUTION

X-ray light-curves of afterglow

AFTERGLOW EVOLUTION

Optical light-curves of afterglow

Important relationships

GW 170817

Neutron star binary merging together with a short GRB and a kilonova

GW 170817

Follow up observations in the TeV band

H.E.S.S. Collaboration 17

THE TeV EMISSION

Since July 2018 we had 5 TeV GRBs (and 2 candidates)

GRB 180720B	00 02 06.87	-02 55 05.2	XGal,GRB,I	z=0.654	Default Catalog
GRB 201216C	01 05 28.88	+16 30 58.0	XGal,GRB,I	z=1.1	Newly Announced
GRB 190829A	02 58 10.51	-08 57 28.1	XGal,GRB,I	z=0.0785	Default Catalog
GRB 190114C	03 38 01.17	-26 56 46.73	XGal,GRB	z=0.4245	Default Catalog
GRB 160821B	18 39 54.71	+12 34 56	XGal,GRB,s	z=0.16	Source Candidates
GRB 221009A	19 13 03	+19 48 09	XGal,GRB,I	z=0.151	Default Catalog
GRB 201015A	23 37 16.42	+53 24 55.8	XGal,GRB,I	z=0.43	Source Candidates

THE TeV EMISSION

GRB 190114C, seen with MAGIC

MAGIC Collaboration 19

THE TeV EMISSION

GRB 190829A, seen with HESS

HESS Collaboration 21

THE BOAT

GRB 221009A, the brightest of all times

THE BOAT

Seen by LHAASO-WCDA

LHAASO Collaboration 23

THE BOAT

And also by LHAASO-KM2A

BONUS TRACK

JETS FROM NEUTRON STARS

High resolution X-ray images from Chandra clearly show jets launched from the Crab and Vela pulsars

U

Crab pulsar, Weisskopf 00