SEEKING VHE PULSAR CANDIDATES FOR CTA OBSERVATORY IN THE FERMI-LAT 3RD PULSAR CATALOG Maxime Regeard & Arache Djannati-Ataï for the CTA Consortium APC – Université Paris-Cité, CNRS, Paris, France.

Caveats of SED extrapolation for Crab-like pulsars

Overestimating emission @energies > 100 GeV in crowded regions

Prediction of the Inverse Compton emission

- the peak energy of the GeV bump : handle on the maximum particle energies for Inverse Compton (IC)
- IC luminosity /GeV luminosity can vary by orders of magnitude
 - Depends on :IC target density and interaction geometry, etc

Very-High-Energy gamma-ray pulsars with the LST-1 (

Speaker: Giulia Brunelli (University of Bologna & INAF-OAS Bologna)

Two pulsars detected by the prototype of CTAO's Large-Sized Telescope (LST-1) Crab pulsar Geminga pulsar

Fig 1: Preliminary phaseogram of the Crab pulsar obtained after the analysis of the 103 hours of good-quality da<u>ta at Zd<50°.</u>

Fig 2: Preliminary phaseogram of the Geminga pulsar obtained after the analysis of the 21 hours of good-quality data at Zd<25°.

Excellent performance of the LST-1 at tens of GeV \rightarrow crucial instrument to study gamma-ray pulsars

Spider Systems: Stellar arachnology at the highest energies

Rocha, L.S.¹, Santos, E.M.¹, dos Anjos, R.C.² ¹University of São Paulo, ²Federal University of Paraná

PROPERTIES

- Millisecond pulsars (P < 15 ms)
- Short orbits (orbital period P < 1 day)
- Presence of pulse eclipses (radio and sometimes gamma-ray)
- Low mass companion:
 - BWs: << 0.1 M_☉
 - RBs: 0.1 0.5 M_☉

Figure 1. Sky map of confirmed and candidate spider systems in galactic coordinates.

MOTIVATION

The pulsar wind interaction with the companion wind might form a intrabinary shock, a promissing region to accelerate particles as well as emit gamma-rays in the TeV range.

PROSPECTS

- Radiative model (van der Merwe et al., 2020): • X-rays and soft gamma-ray: syncrothron radiation; hard gamma-rays: inverse Compton (IC)
- Spider systems with hot or flaring companions may be promising targets for the Cherenkov Telescope Array (CTA) Obersvatory.
- Our analysis follows as:
 - Select a region of interest (ROI) around each system
 - Extract flux points from available observations
 - Perform a MCMC sampling over a set of spectral models (power-law, log-parabola, etc.)
 - Model comparion methods to select the most likely model
 - ID ON/OFF analysis to simulate observations (the best-fit model is injected in this step)
- Pin-down the best CTA targets

Acknowledgments:

Very High-Energy Gamma-ray observations of the Galactic magnetar SGR 1935+2154 with the CTAO Large-Sized Telescope prototype

•

Speaker: G. Panebianco

- Galactic Magnetar, 2 types of emission:
 - Persistent (few keV)
 - Transient, short bursts at keV-MeV
- SGR 1935+2154: 1st evidence for **FRB-magnetar connection**
- LST-1 observations: ≈38h (≈25h good)
- **Simultaneous to 9 burst alerts** reported by X-gamma satellites

 Stacked spectral analysis -> Upper Limits (ULs) persistent emission (Fig.1) Short time scale analysis -> Cuts optimized to detect 0.1s signal above Poisson background (Fig.2) Flux ULs around Time of Alerts (≈ no background):

- 1.3 · 10⁻⁸ s⁻¹ cm⁻² (over 0.1 s)
- 2.6 · 10⁻⁹ s⁻¹ cm⁻² (stacked)
- Search for non-simultaneous bursts -> No detection (Fig. 3)

Analysis of the possible detection of the pulsar wind nebulae of four pulsars

• Test to what extent the pulsar tree groups detectable PWNe despite it considering only pulsars' intrinsic properties.

- Select four pulsars as candidates for TeV PWNe based on their positions in the pulsar tree.
- Predicte possible spectral energy distributions (SEDs) of the PWNe of the four pulsars via our detailed time-dependent, leptonic model.

- Estimate the likelihood of detection for the four candidates.
- In doing so, we provide context for analyzing the advantages and caveats of the pulsar tree position as a marker for properties.

Aims

Method

Results

Finanziato dall'Unione europea NextGenerationEU

Ministero dell'Università e della Ricerca

2FHLJ1745.1-3035: A Newly Discovered, Powerful Pulsar Wind Nebula Candidate

Very hard emitter (Gamma=1.2, Emax~1) TeV) detected by Fermi-LAT in the Galactic Plane. Unassociated, and not linked to nearby, softer 4FGL+H.E.S.S. source of unknown origin.

X-ray + SED Modelling: candidate compact, young (possibly youngest, age<1,000 years!) PWN. Ideal CTA follow-up target!

Missione 4 · Istruzione e Ricerca

Gamma-ray emission from Puppis A with Fermi-LAT telescope: evidence for proton acceleration

- Asymmetric gamma-ray emission:
 - Bright East side, interacting with a molecular cloud. Spectrum: Log Parabola. Radiative shock? Reaccelerated CRs (Uchiyama et al 2010)?
 - Fainter West side, interacting with an atomic cloud. Power Law. Non-radiative shock? DSA?

- SNR-escaping CR)
- SNR-escaping CR)

2. <u>Two bright gamma-ray excesses out of the remnant:</u> \circ North: coincident with dense medium, extended, hard spectrum (w = 7.3 eV/cm3, \circ South: coincident with dense medium, point-like, hard spectrum (w = 6.4 eV/cm³,

> Roberta Giuffrida, Marianne Lemoine Goumard, Marco Miceli, Stefano Gabici, Hidetoshi Sano, Maki Aruga, Martin Mayer, Yasuo Fukui on behalf of the Fermi-LAT collaboration

The Effects of Dense Medium on The Electron Acceleration in Kepler's SNR: A Multiwavelength Exploration Radio Polarization Fraction X-ray: XMM-Newton and N

On the origin of HE CRs from Colliding Wind Binaries in SFRs: numerical simulations and particle acceleration

Falceta-Gonçalves, Diego Kowal, Grzegorz; Abraham, Zulema & Banchetti, Gislaine

Universidade de São Paulo – School of Arts, Sciences & Humanities São Paulo - Brazil

Motivation

- Massive stars are mostly formed in binary/multiple systems (>50-70%).
- dM/dt ~ 10^{-7} 10^{-4} M_{sun}/yr and wind speeds u ~ 700 4000 km/s.
- synchrotron emission, which indicates intense magnetization as well as high energy particles.

Density

Results

- We use a Passive Particle Trajectory Integration method on top of the MHD.
- Our results showed that CWBs are efficient in accelerating particles in the > TeV energy range, confirming HESS and FERMI observations of Eta Carinae.

Multiwavelength characterization of the region around LHAASO J1956+2845

Michela Rigoselli¹, Silvia Crestan¹, Alberto Bonollo^{1,2,3}, Andrea Giuliani¹, Sandro Mereghetti¹ for the ASTRI Project [http://www.astri.inaf.it/en/library/]

of Fermi-LAT data [2], LHAASO spectra [5] and our simulated CTAO-North [7] and ASTRI Mini-Array [8] data:

¹ INAF IASF-Milano ² University of Trento, ³ IUSS-Pavia

INPUT MODEL

from our analysis of Fermi-LAT data [2] and the study of multiwavelength emission [3,4,5]: • **J1952** —> **PWN DA 495**: Leptonic emission (*a*=2.4, *E*_c=16 TeV, *B*=6.7 μG)

• J1954 —> SNR G65.1+0.6: Hadronic emission (a=2.2, Ec=1 PeV) Gaussian morphology (σ =0.12°, [5])

• J1958 —> TeV Halo: Leptonic emission (*a*=2.3, *E*_c=250 TeV, *B*=5 μG) Diffusion-model morphology ($\theta_d = 1^\circ$, [6])

RESULTS

J1958 / TeV halo

Cao et al. 2021, Nature, 594, 33 https://fermi.gsfc.nasa.gov/ssc/data/access/ 6. Gao et al. 2011, A&A, 529, A159 Coerver et al. 2019, ApJ, 878, 126

Cao et al. 2024, ApJSS, 271, 25 Scuderi et al., 2022, JHEAP, 35, 52

Investigating the leptonic PeVatron: MGRO J1908+06, with Fermi-LAT, VERITAS, and HAWC

Ruo-Yu Shang, Jordan Eagle, Sara Coutiño De León, Sajan Kumar

Watch the PWN evolution with multi-wavelength γ -ray data: low-energy γ rays reveal the relic nebula, while the high-energy γ rays show the recent image of the nebula. Analysis uses γ -ray morphology and spectrum to study PWN physics parameters.

Multi-messenger Modeling the Monogem Pulsar Halo

GRavitation AstroParticle Physics Amsterda

CTAO Symposium 15-18, April 2024

Atmospheric Sub-GeV Dark Matter at Neutrino Detectors Francesco Xotta, Filippo Sala, Silvia Pascoli francesco.xotta@ung.si

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

Dark Matter γ-ray searches in Galaxy Clusters with CTA: status & prospects

Judit Pérez-Romero (judit.perez@ung.si) CTA Cons. 23 [2309.03712]

- Different gravitational evidences hint to the existence of Dark Matter (DM), a massive component of the Universe responsible for shaping the cosmic structures
- In denser regions, DM particles can annihilate/decay, producing γ -ray emission

Galaxy Clusters are extremely massive, DM dominated objects **Perfect for** γ **-ray DM searches**

2nd CTAO Symposium, 15-18 April 2024

- The Cherenkov Telescope Array (CTA) is the future of high-energy γ -ray astronomy (one order of magnitude improvement in sensitivity respect current IACTs)
- State-of-the-art model of DM density profile including the contribution of substructures
- Template fitting analysis including all γ -ray emissions in the region

CTA will observe the Perseus Galaxy Cluster CTA has superb capabilities to test the **TeV range for WIMP DM models**

 Constraints for the DM parameters for the 300h of planned observations of Perseus cluster

Most constraining 95% C.L. limits for decaying DM in the literature

Galactic Centre Dark Matter Searches with SV

J. Djuvsland, H. X. Ren, A. Albert, M. Andrade, J. Serna, A. Viana and J. A. Hinton for the SWGO Collaboration

Estimated WIMP sensitivity for SWGO

(future gamma ray observatory in South America)

for observations of the Galactic Centre:

 \rightarrow Sensitivity below thermal relic cross section for O(10 TeV) WIMP masses

Expected exclusion limits for WIMP annihilation at 95% C.L. for 10 years of SWGO operation compared to expectations for CTA [JCAP01(2021)057].

MAX-PLANCK-INSTITU FÜR KERNPHYSIK Heidelberg

Search for the evaporation of primordial black holes with H.E.S.S.

Primordial Black Holes (PBH)

- Black Holes evaporate over time due to thermal emission (Hawking temperature).
- Speculative $10^{15}g$ PBHs would be evaporating now.
- TeV photons are emitted in the last hours before total evaporation.
- Signal: point-like signal during a short time-window
 - $(\Delta t \simeq a \text{ few seconds}).$

Search with H.E.S.S.

- 4816 hours from H.E.S.S. I phase (2004 \rightarrow 2012).
- Search window: $\Delta \theta = 0.14^{\circ}$ (space), $\Delta t = 10, 30, 60, 120$ s (time).
- Statistical background found by "scrambling" the arrival time of photons.

Results

- No excess signal over background found for any value of Δt .
- Most constraining 95% CL upper limit on the PBH burst rate is $\dot{\rho}_{PBH} < 2000 \text{pc}^3 \text{yr}^1$.
- Comparable to HAWC and Fermi-LAT constraints

Upper limits on the evaporation rate of PBHs $\dot{\rho}_{PBH}$ as a function of Δt .

Publication

F.A Aharonian et al, H.E.S.S. collaboration, Journal of Cosmology and Astroparticle

Physics, vol. 2023, no. 4 (2023), doi:10.1088/1475-7516/2023/04/040

Lorentz invariance violation search with the CTAO Large-Sized Telescope

Speaker: Cyann Plard

- Extraction of a limit on the quantum gravity energy E_{QG} from y-rays time delays
- A systematic study of all AGN data from LST-1

Lorentz invariance violation searches and intrinsic effects with the **Cherenkov Telescope Array: A feasibility study for flaring blazars**

cherenkov telescope array

A. Rosales de León, J. Bolmont, H. Sol

Would CTA be able to detect intrinsic or LIV time delays from flaring blazars?

TIME-DEPENDENT AGN MODELING SIMULATIONS: CTA-AGN-VAR PIPELINE

- Based on Mrk 421 bright TeV flare of Feb, 2010.
- **One-zone SSC model parameterization.**
- ~5.5 h evolution of the flare.
- Output: SED snapshots with different values of injected LIV delays.

LIV injection:

1st order correction to the dispersion relation:

 $E^2 \simeq p^2 c^2 \times \left[1 \pm \sum_{n=1}^{\infty} \left(\frac{E}{E_{QG}} \right)^n \right]$

- Linear dependency of time lags with energy. Test subluminal and superluminal LIV effects: Injected LIV time delays: ±400, ±200 s/TeV.

- Alpha and Omega configuration arrays. Prod5 v0.1 IRFs
- Fit an analytical spectral model: Power Law + Exp Cut-Off
 - **Output: Reconstructed light curves from** simulations on different energy bands.
 - Light curves are fitted using a Fast Rise **Exponential Decay (FRED) function.**

RESULTS

- Look for time delays between light curves at different energy bands.
- Check for the significance of the intrinsic and LIV time delays.
- Check for hysteresis patterns using Hardness-Intensity Diagrams (HID)

bservator

SORBONNE

UNIVERSITÉ

CTAO Science Symposium - Bologna, April 2024