

CTAO: two array sites, one unique observatory

[Alpha configuration]

CTAO: two array sites, one unique observatory

[Alpha configuration + 2 LSTS + 5 SSTs?]

Improved Alpha Configuration

+ 20% improvement in angular resolution to 500 GeV

Improving performance of Alpha Configuration

... introducing the concept of event types

POSTER ID-073

J.Bernete-Medrano et al

Improving performance of Alpha Configuration

There is more room

... using a hybrid likelihood, machine-learning algorithm

What does this imply for science?

POSTER ID-037
G. Schwefer et al

Improving performance of Alpha Configuration

0,04º as requirent

factor 4 better angular resolution

Keeping systematic uncertainties under control

 ongoing detailed studies to be able to account for variations of molecular profiles, absorbing molecules, aerosols, and clouds in the simulations

AN EXAMPLE

- Discrepancy between the real molecular density profile and the simulated can be maintained within <2% systematic uncertainty if we simulate three reference molecular density profiles to account for its seasonal variations
- To compute the accuracy and precision of the ECMWF info we are organizing radio sonde campaigns
 --> partecipating in the ESO atmospheric characterization campaign

Credits to G. Voutsinas

POSTER ID-075
G. Voutsinas et al

The prototype telescope LST-1 is already taking data

POSTER ID-028 Pulsars with LST1 Brunelli et al.
POSTER ID-002 Axions with LST1 Batkovic et al.
POSTER ID-029 LIV with LST1 Plard et al.
TALKS by D. Green, D. Morcuende & M.S. Carrasco

The PeVatron candidate LHAASO J2108+5157 seen by LST-1

First detection of VHE gamma-ray emission from FSRQ OP 313 with LST-1

ATel #16381; Juan Cortina (CIEMAT) for the CTAO LST collaboration

on 15 Dec 2023; 14:31 UT

Credential Certification: Juan Cortina (Juan.Cortina@ciemat.es)

Subjects: Gamma Ray, >GeV, TeV, VHE, Request for Observations, AGN, Blazar, Quasar

The plan towards the first CTAO data: intermediate array configuration

CONCEPT

Intermediate array configurations: incremental array configurations that become progressively operative

- array elements fully integrated with the intermediate releases of the software packages
- array elements include telescopes but also calibration devices and atmospheric characterization instruments

MID-PERIOD PLAN (3 yr long) BASED ON THE CONSTRUCTION SCHEDULE built accounting for the inputs of the in-kind contribution teams

When will the scientific impact begin?

- 2 LST
- 2 LST + 1 MST
- ◆ 1 MST + 5 SSTs
- ▲ 5 SSTs

Angular resolution up to 40% improvement with respect to current IACT arrays

To get first high impact results we shall focus on science cases needing sensitivity more than angular resolution

in 2027 18/04/24

@CTAO-North

@CTAO-North

@CTAO-South

@10 TeV

- as good as LHAASO
- 80% better than ASTRI

on-axis @ 3º

Access to CTAO data

- not yet decided the access during construction
 - an incentive for in-kind contributors
 - broad-community will be kept involved
- during the array deployment, integration & commissioning will have the priority

Access to CTAO data

In operation phase access is regulated by he already approved access policy

integrated over 10 yr

Access to CTAO data in operations phase

Key Science Projects

- Guaranteed time observations as reward for contribution to the construction project provided that all contributing parties pull their time creating a science collaboration
- KSP principles: science-driven & community wide on key science cases promising major breakthrough
- KSP deliverable: legacy data sets and legacy data products, among which gamma-ray catalogues, which are produced in a coherent fashion
- Large & Long Proposals, requesting >100 hr and involving several observing period
- there are science cases focusing on the sub-TeV range that could be started before the full array deployment is completed without science losses

Bridging with other communities

workshops on specific science and science operations topics to discuss synergies

- to make a non-gamma-ray astronomer familiar with both the scientific capabilities and the data analysis we are organizing science data challenges
 - end of 2025 release of the first open SDC (7 years of data)
 - this afternoon release of 1 year of data for internal community as PoC

All credits to the SDC technical task force and a huge thanks to the collaboration of the CTAO Consortium & gammapy team γ_{π}

18/04/24

