

Schwarzschild-Couder Telescope: An innovative technology for gamma-ray astrophysics

2nd CTAO Science Symposium

Ruo-Yu Shang (Barnard College, Columbia University) for the SCT group

- Need for new IACT technology
- Design of Schwarzschild-Couder Telescope (SCT)
- Performance of SCT
- Expected improvement to CTA science
- Current status and future plans

Outline

Instrument Funded by 3 NSF MRI Awards

- SCT Telescope MRI (2012-2018)
- SCT Camera upgrade MRI (2018-2025)
- SCT/MST Optical Alignment MRI (2023-2026)

+ Multiple International Partners

Need for fine angular resolution

- At lower energies (< 1 TeV), the telescope operates in a background dominated regime
 - Gamma-ray showers: clean and narrow
 - Hadronic showers: fat and messy.
- The angular resolution has a major impact on gamma-ray sensitivity.
- Transverse angular size of the gamma-ray shower core is ~ 1 minute of arc.
- Current generation IACT instruments have pixel size of 9 arcmin (far from optimal!)

Need for large field of view

- At high energies, images at large core distance are truncated by the camera FoV
- Conventional IACTs have a FoV ~ 4 deg
- Need a large FoV without degradation of sensitivity at large offset angle

Need for large field of view

- Conventional IACTs maintain good PSF up to an offset angle of ~ 2 deg.
- For sources with large extension (e.g. Geminga halo radius > 5 deg), analyses are difficult without γ -free background region in FoV.
- To improve angular resolution by ~3x and field of view by ~3x:
 - A camera with $\sim 10^5$ pixels
 - Current IACTs have ~10³ pixels

Dec. [deg]

Schwarzschild-Couder telescope (SCT)

- Dual-mirror design:
 - Correct for spherical and comatic aberrations
 - Small plate scale
 - Large field of view
 - Large telescope aperture
- Compact high-resolution camera:
 - Silicon photomultipliers
 - 11328 pixels
 - Each pixel 0.067°(6 mm) square (PSF 0.05-0.07 °)
 - 8° field of view
- R&D funded by NSF + international partners happening in the US

Detection of Crab Nebula

- Crab Nebula is detected at 8.6σ in 2019 with a partial camera.
- A major milestone for the demonstration of the viability of SCT technology for CTA.
- The co-location of SCT project with VERITAS observatory at FLWO and simultaneous operation of both instruments has been critical ingredient of this success!

Brown^p ... A. Zink

Show more 🗸

Astroparticle Physics Volume 128, March 2021, 102562

Detection of the Crab Nebula with the 9.7 m prototype Schwarzschild-Couder telescope

C.B. Adams^a, R. Alfaro^b, G. Ambrosi^c, M. Ambrosio^d, C. Aramo^d, T. Arlen^e, P.I. Batista^f, W. Benbow^g, B. Bertucci ^{c, h}, E. Bissaldi ^{i, j}, J. Biteau ^{k, J}, M. Bitossi ^m, A. Boiano ^d, C. Bonavolontà ^d, R. Bose ⁿ, A. Bouvier ^{k, o}, A. Brill ^a, A.M.

🚓 Share 🏾 🍠 Cite

https://doi.org/10.1016/j.astropartphys.2021.102562

Get rights and content

Optical performance

- The full alignment of the optical system across the 8-deg FoV was initially completed in 2022
- The optical PSF is ~ 3.2 arcmin on-axis and ~ 4.2 arcmin at 3.5-deg off-axis.
- Good PSF is maintained across the 8deg FoV!

CTA South configuration

- Nominal CTA South alpha configuration includes 14 DC-MSTs (black dots)
- We consider + 11 SCTs (green dots) configuration as a hypothetical enhancement exercise

Gamma-ray performance

- The addition of 11 SCTs to CTA will improve the ability in resolving sources with small extensions.
- Simulation of γ-ray emission from a source similar to Cas A, placed a different distances, is used to test the capability of detecting the source extension.
- The ability to resolve a radius = 1' source means that CTA and NuSTAR/XMM/ Chandra can observe a source at different wavelength with a similar angular-size scale.

Detecting extended sources

- TeV halos are key for understanding positron excess.
- Analyses for extended sources are difficult without γ -free background region in FoV.
- SCT provides good PSF maintained across the 8-deg FoV
 - Contain Geminga halo emission in a single pointing
 - γ-ray-free region in the FoV available for background modeling

Detecting transient sources

- Transient events with poor localizations (e.g. GW and GRB events) require multiple pointings.
- SCT with large
 FoV can cover a
 large sky region
 with fewer
 pointings and
 shorter time.

Detecting high-energy sources

• First Catalog of LHAASO sources opens a new territory of gamma-ray astronomy with 43 UHE sources (>100 TeV).

• Good PSF maintained over 8-deg FoV would allow energy reconstruction of high-energy events (that would be truncated in conventional IACT FoV) and improve high-energy sensitivity.

E = 24.15 TeV $C_x = -7.89 \text{ m}, C_y = -226.99 \text{ m}$

Camera upgrade

- Populate all 9 camera sectors: 177 modules, 11328 pixels
 - Increase field of view x7
- Upgraded electronics
 - Improvement in single photon resolution,
 - lower minimum threshold and lower noise

Hierarchical, modular design based on silicon photomultipliers and waveform sampling TARGET chips

SMART ASIC: Integrated preamplifier attached to SiPM boards

CTC+ CT5TEA FEE module: 16 us storage depth 4 trigger pixels per ASIC Adjustable threshold for each group

Reconstruction algorithm

- We are developing a new reconstruction algorithm that could maximize the advantage of SCT's high-angular resolution and timing information.
- Idea is to use Single Value Decomposition to analyze γ-ray shower images in simulation and build time-dependent image template using principle components.
- The initial result looks promising.
- Simulation study with Prod6 in the future to fully characterize SCT performance.

Conclusion

- SCT design achieves 3.2 arcmin optical PSF across 8-deg FoV:
 - Dual-mirror optics
 - High-resolution SiPM
- Expected improvement to CTA includes detecting transient events, resolving source confusion, detecting PeVatron, and large-extent sources
- The SCT group has constructed a prototype with functioning optical and camera
 - Detected Crab Nebula
 - Upgrading to full camera in this year
- Thank you to NSF and international partners for their support!

PSF=3.5'

Orange: 3.5' < PSF < 4.0'

PSF=4.0'