Future TeV-PeV Gamma-ray Instruments

Ulisses Barres CBPF - IAG/USP

èsar attes

Content

- 1. Current context
- 2. IACTs beyond CTA
- 3. Wide-Field Instruments
- 4. SWGO

— CTAO Symposium 2024 | Bologna —

SPRINGER NATURE Reference

Current context

Cosimo Bambi Andrea Santangelo *Editors*

Handbook of X-ray and Gamma-ray Astrophysics

🖄 Springer

arXiv:2307.02976

Future developments in ground-based gamma-ray astronomy

Ulisses Barres de Almeida * and Martin Tluczykont

MAGIC

cta

VERITAS

HAWC

s₩Ĝŵ

HESS

HAASO

Ground-based Gamma-ray Astronomy Network

main B

— CTAO Symposium 2024 | Bologna —

Large reflectors + Fine-pixel camera
Wide field of view for imaging and background
Stereoscopy → excellent shower reconstruction

'Real Astronomy' at VHEs

High altitude & fill factor → dense shower front sampling
Large array areas for efficient shower detection
Large Muon Effective Areas

Two techniques

Air-shower particle arrays

IACTs beyond CTA

The Definitive IAC Array

- CTAO Symposium 2024 | Bologna -

Large projects are rich R&D environments

— CTAO Symposium 2024 | Bologna —

ASTRI Telescope

Mini-Array Thanks to Giovanni Pareschi

- Advancing novel IACT optics
 - → Pioneering dual-mirror design for the SSTs
 - compact telescopes and reduced focal length (7 mm pixel size)
 - \checkmark good angular resolution over a wide-field of view (> 10°)
 - "aplanatic" optics for aberration correction
 - → Developing SiPM camera technology and associated electronics
 - → Expanded into a full "mini-array" proposal
- "Mini-Array" with science exploiting
 - \rightarrow the CTA timeline and LHAASO synergies
 - → flexible schedule for deep observation programme

ASTRI Array

- Array of 9 x 4-m class telescopes at the Teide Observatory, in Tenerife
 - → ASTRI-1 telescope installed in June 2022 → full array by end 2025
 - → Early science from 2025
- Science Programme
 - → deep-field observations, surveys and extended sources
 - characterise the morphology of extended UHE
 - → extend spectra of known sources and measure

	ASTRI Mini-Array	H.E.S.S.	HAWC	LHAASO
Altitude [m]	2,390	1,800	4,100	4,410
\mathbf{FoV}	$\sim 10^{\circ}$	$\sim 5^{\circ}$	$2{ m sr}$	$2\mathrm{sr}$
Angular Res.	$0.05^\circ~(30{\rm TeV})$	$0.06^{\circ}~(1{\rm TeV})$	$0.15^\circ~(10{\rm TeV})$	(0.24–0.32)° (100 TeV
Energy Res.	$12\%~(10{ m TeV})$	$15\%~(1{\rm TeV})$	$30\%~(10{\rm TeV})$	(13-36)% (100 TeV)
Energy Range	$(0.3-200) \mathrm{TeV}$	$(0.02-30) { m TeV}$	(0.1-200) TeV	$(0.1-1,000) \mathrm{TeV}$

ASTRI Array

Science Operations

- → 4+4 years of science, from 2026
- → first 4 years: run as an experiment, with key science
- → after which: move towards an observatory model with open time

15

MACE

Design Features
 Large optical reflector, 21-m ø + AMC
 Small on-axis spot size at focal length
 Compact camera, 1088 x 1.5" PMTs
 FoV ~ 4°, pixel size = 0.125°
 GHz signal processing and trigger strategy

CTAO Symposium 2024 | Bologna —

MACE

Design Features

- Large optical reflector, 21-m ø + AMC
- Small on-axis spot size at focal length
- Compact camera, 1088 x 1.5" PMTs
- → FoV ~ 4°, pixel size = 0.125°

 GHz signal processing and trigger strategy
 Simulations ongoing for a stereoscopic MACE-2

- CTAO Symposium 2024 | Bologna –

MACE detection of very high energy gamma-ray flare from the radio galaxy NGC 1275

ATel #15823; K. K. Yadav (Bhabha Atomic Research Centre, Mumbai, India) on 23 Dec 2022; 13:02 UT Distributed as an Instant Email Notice Transients Credential Certification: Kuldeep Yadav (kkyadav@barc.gov.in)

Detection of Very high energy gamma-ray flare from the blazar Mrk 421 with MACE

ATel #16537; K K Yadav on behalf of MACE team (Bhabha Atomic Research Centre Mumbai, India)

> on 18 Mar 2024; 13:51 UT Credential Certification: Kuldeep Yadav (kkyadav@barc.gov.in)

LACT: LHAASO's IACT Array

Thanks to Hao Zhou

- UHE PeVatrons discovered by LHAASO call for an improved angular resolution down to a few arc-min:
 - → Resolved morphology of extended sources
 - → Better establish counterparts at lower energies

- Proposal for an IACT array at LHAASO site
 - → Operating > 300 GeV, up to UHEs
 - → 32 telescopes in 8 x 4-IACT arrangements
 - → 6-m ø reflector; 9.6° wide-field of view
 - → 500-hr sensitivity @ 100 TeV similar to LHAASO array
 - → First full prototype by end 2024
 - → Complete array expected ~ 2028

LACT: LHAASO's IACT Array

- Expected performance
 - → Effective area few-km² > 1 TeV
 - Angular resolution better than 3' > 1 TeV
 - → Ground-array hybrid hadron rejection > 10 TeV

On-site prototype at LHAASO

Wide-field Ground-based Gamma-ray Instruments

Linh

PARTICLE DETECTOR ARRAY

Larger and higher...

Tunka Advanced Instrument for Gamma Astronomy

- Tunka Valley hosts a long-standing CR facility
 - → Tunka-133: 3 km² air-Cherenkov array; 175 stations
 - → Tunka-Grande: underground muon scintillator array
 - → Tunka-Rex: 3 km² EAS radio array; 63 antennas
- TAIGA is a novel hybrid facility
- ◎ The pilot TAIGA-1 (km²) stage is in operation
 - → HiSCORE: 120 air-Cherenkov timing stations
 - → TAIGA-IACT: 3 IACTs
 - → TAIGA-Muon: surface and underground scintillator array

TAIGA-1 Hybrid array

HiSCORE

- → 120 stations, in average 100 m apart
- \rightarrow Low cost, ~ 1 MEUR/km²
- → Good core location (~5-10 m) and angular resolution ~ 0.15°
- \rightarrow Poor γ /hadron separation

IACTs

- → 3 x 600-m apart
- → 4.3-m ø, Davies-Cotton IACTs
- → Energy threshold ~ 6 TeV standalone;
 10 TeV stereoscopic
- $\rightarrow \gamma$ /hadron separation improvement

→ ~ 0.3% fill-factor

TAIGA-1 Hybrid reconstruction

- Typically EAS is seen by 1 IACT + surrounding HiSCORE stations
 - → Taking advantage of the full effective area of the single IACT
 - → Optimal core-distance reconstruction ~ 250 m
- Core and direction reconstruction is done with HiSCORE.
- Matched to the IACT image size to derive a hybrid scaled width parameter
 - → Trigger: 1 IACT + 3 HiSCORE station
 - → Combined energy threshold ~ 40 TeV
 - \rightarrow Q-factor (= $\gamma_{\text{eff}}/\sqrt{CR_{\text{eff}}})$ ~ 4-5

TAIGA-1 Hybrid reconstruction

- Typically EAS is seen by 1 IACT + surrounding HiSCORE stations
 - → Taking advantage of the full effective area of the single IACT
 - \rightarrow Optimal core-distance reconstruction ~ 250 m
- Core and direction reconstruction is done with HiSCORE.
- Matched to the IACT image size to derive a hybrid scaled width parameter
 - → Trigger: 1 IACT + 3 HiSCORE station
 - → Combined energy threshold ~ 40 TeV
 - → Q-factor (= $\gamma_{eff}/\sqrt{CR_{eff}}$) ~ 4-5

TAIGA 10 km² Array

- Future of expansion of TAIGA, beyond the Tunka site
- Operations from ~ 10 TeV to the PeV range

- → 1000 HiSCORE stations
- → 100-m spacing
- → EAS reconstructions

- → Up to 10 IACTs
- → 4.3-m ø class

- → Muon-scintillator array
- → Surface + underground stations
- → Up to 3,000 m²
- → Up to 100 small-imaging telescope
- → Wide, 30° FoV
- → SiPM-based camera

Motivation for a Southerr Wide-field Array

Galactic Center 🔵

Westerlund

+ transientsynergieswith CTA

RX J1713.7-3946

LHAASO + Sur HAWC

Crab Nebula

HESS A&A 621 (2018) *Based on figure 16

Thanks to Keto Sei

Southern Wide-Field Gamma-ray Observatory

CONTACT: swgo_spokespersons@swgo.org

www.swgo.org

SWGO Collaboration

Argentina Brazil Chile China Croatia Czech Republic Germany

Italy Mexico Peru Portugal South Korea United Kingdom United States

Primary Site Candidates

Cerro Vecar, Argentina - 4820 m

Pampa La Bola, Chile - 4770 m

The reference detector concept

Core: Ø 320 m, FF = 80% 5,700 WCD units

Outer: Ø 600 m, FF = 5% 880 WCD units

Altitude: 4,700 m a.s.l.

A next generation observatory

[—] CTAO Symposium 2024 | Bologna —

A next generation observatory Angular Resolution

Exploring different WCD concepts

The Southern Wide-field Gamma-ray Observatory **Development of new concepts and approaches**

— CTAO Symposium 2024 | Bologna —

SWGD - DOD

Detector options and prototyping

Development of new concepts and approaches

— CTAO Symposium 2024 | Bologna —

Status & Plan

	SWGO R&D Phase Milestones
M1	R&D Phase Plan Established
M2	Science Benchmarks Defined
M3	Reference Configuration & Options Defined
M4	Site Shortlist Complete
M5	Candidate Configurations Defined
M6	Performance of Candidate Configurations Evaluated
M7	Preferred Site Identified
M8	Design Finalised
M9	Construction & Operation Proposal Complete

◎ R&D Phase

- → Kick off meeting Oct 2019
- → Expected completion early 2025
 - Site and Design Choices made
- → Then:
- Preparatory Phase
 - → Detailed construction planning
 - Engineering Array
- - → From 2027

Roadmaps

Astrophysic

- → US Decadal Review
- → SNOWMASS, APPEC, Astronet

Science

6 core benchmark science cases

Science case studies using gammapy ongoing.

Core Science Case	Design Drivers	Benchmark Description
Transient Sources:	Low-energy	Min. time for 5σ detection
Gamma-ray Bursts	Site altitude	$F(100 \text{ GeV}) = 10^{-8} \text{ erg cm}^{-2} \text{ s}^{1}$
Galactic Accelerators:	High-energy sensitivity	Maximum exp-cutoff energy de-
PeVatron Sources	Energy resolution	tectable 95% CL in 5 years for:
		F(1 TeV) = 5 mCrab, index = -2.3
Galactic Accelerators:	Extended source sensitivity	Max. angular extension detected at
PWNe and TeV Halos	Angular resolution	5σ in 5-yr integration for:
		$F(>1 \text{ TeV}) = 5 \times 10^{-13} \text{ TeV cm}^{-2} \text{ s}^{1}$
Diffuse Emission:	Background rejection	Minimum diffuse cosmic-ray resid-
Fermi Bubbles		ual background level.
		Threshold: $< 10^{-4}$ level at 1 TeV.
Fundamental Physics:	Mid-range energy sensitivity	Max. energy for $b\bar{b}$ thermal relic
Dark Matter from GC Halo	Site latitude	cross-section at 95% CL in 5-yr, for
		Einasto profile.
Cosmic-rays:	Muon counting capability	Max. dipole energy at 10^{-3} level.
Mass-resolved dipole		Log-mass resolution at 1 PeV - goal
Multipole anisotropy		is $A = 1, 4, 14, 56$; Maximum mul-
		tipole scale > 0.1 PeV.

[—] CTAO Symposium 2024 | Bologna —

Transients with SWGO

- Short-timescale sensitivity of ground-particle detectors is much worse than IACTs at low E! But room for improvement < 1 TeV
- o And a number of other advantages...
 - → 100% duty cycle → higher rate and monitoring capability of transients
 → bridging the gap with satellite facilities
 - Serendipitous view observation of onset / prompt emission of GRBs
 - → A trigger instrument!
 - Blind searches and offline checks for afterglow triggers
 - Critical synergy with IACTs and other MWL + MM instruments

SWGO can bring the 10s deg² error boxes (GBM, GW) down to ~ deg²

Thanks

Ulisses Barres ulisses@cbpf.br

"The history of science can be summarized as the developing of ever more perfect eyes, in a world where there is always more to see" — Theillard de Chardin

***4**5