CTAO Symposium Bologna - 15-17 April 2024

The Electromagnetic Follow-up of Gravitational Wave Events at TeV Energies with the CTA-Observatory

A. Carosi, J. Green, L. Nava, B. Patricelli, F. Schüssler, M. Seglar-Arroyo, <u>A. Stamerra</u> for the CTAO-GW team (on behalf of the CTAO Consortium)

cherenkov telescope array

"We gratefully acknowledge financial support from the agencies and organisations listed here: www.cta-observatory.org/consortium_acknowledgments/"

The era of gravitational waves: GW interferometers

Run o1 (2x LIGO) Updated Sept 2015 - Jan. 2016 2024-03-14 First GW black-hole binary event! LIGO Run o2 (2x LIGO + VIRGO)

2016-2017; 6 months; Virgo: Aug. 2017 First EM counterpart of binary neutron stars merger!

Run o3 (2x LIGO+VIRGO+KAGRA)

February 2019; 1 year - O3a / O3b First neutron star-black hole events! March 27th: stop due to COVID19...

Run O4 - (LIGO+VIRGO+KAGRA) Started 24 May 2023 until February 2025

Run O5 - AdV + phase (LIGO + VIRGO + KAGRA + LIGO - India) 2027-2030

https://www.liqo.org/scientists/GWEMalerts.php

https://observing.docs.ligo.org/plan/

Since April 10, 2024 Virgo is online!

Run O5 matches the current CTAO South timeline

Antonio Stamerra (INAF-OAR)

THE ERA OF GRAVITATIONAL WAVES: GW INTERFEROMETERS

Sky Localization

https://gracedb.ligo.org/superevents/S240413p/view/

CTAO Symposium

GW AND ELECTROMAGNETIC (EM) COUNTERPARTS

- Binary Neutron Star mergers (BNS) -> short GRB suggested (since Eichler+1989), expected (GRB050724) and observed (GW/GRB170817)
 - But 2 long GRBs were associated kilonova (GRB060614, GRB211227) —> scenario not straightforward
- BH-NS \rightarrow short GRB ? e.g. Berger+2014, Barbieri+2020, Rossi+2019 e.g. GRBs 050509B, 061201.
- BH-BH: ?? no EM emission expected (but Loeb+2016, Perna+2016, Murase+2016, Graham et al. 2020,...)
- SN collapse: long GRB ? (LIGO coll. 2014, LVC 2021)

Electromagnetic emission

GW emission from merger

GW emission from asymmetric star collapse

GW AND ELECTROMAGNETIC (EM) COUNTERPARTS

- Binary Neutron Star mergers (BNS) -> short GRB suggested (since Eichler+1989), expected (GRB050724) and observed (GW/GRB170817)
 - But 2 long GRBs were associated kilonova (GRB060614, GRB211227) —> scenario not straightforward
- BH-NS \rightarrow short GRB ? e.g. Berger+2014, Barbieri+2020, Rossi+2019 e.g. GRBs 050509B, 061201.
- BH-BH: ?? no EM emission expected (but Loeb+2016, Perna+2016, Murase+2016, Graham et al. 2020,...)
- SN collapse: long GRB ? (LIGO coll. 2014, LVC 2021)

What do we expect in the TeV band?

Electromagnetic emission

GW emission from merger

GW emission from asymmetric star collapse

GWS AND GRBS AT TEV ENERGIES

No detection of GeV-TeV emission from the counterpart of GW170817/GRB170817A

No detection at the maximum of the delayed emission

Antonio Stamerra (INAF-OAR)

GWS AND GRBS AT TEV ENERGIES

- ★ Detection of the TeV (afterglow) emission
 - ✓ GRB engine accelerates photons up to TeV
 - Gamma rays up to 12 TeV from the GRB 221009A! •
 - ✓ Evidence of a second energetic component
 - Intersection Section And time evolution similar to the optical-X-ray component: TeV flux follows closely the X-ray flux

H.E.S.S. Coll., Science, 372 (2021)

Antonio Stamerra (INAF-OAR)

The Role of Off-Axis Observations and structured Jet

GeV-TeV emission is expected from the relativistic outflow (jets) In GW-counterparts, the jet is seen preferentially off-axis: small Lorentz factor

- intensity weaker 10⁻⁴ to 10⁻⁶ times than on-axis emission
- light curve <u>delayed</u> (hours/days/months, depending on θ_{view})

The Role of Off-axis Observations and structured Jet

GeV-TeV emission is expected from the relativistic outflow (jets) In GW-counterparts, the jet is seen preferentially off-axis: small Lorentz factor

- intensity weaker 10⁻⁴ to 10⁻⁶ times than on-axis emission
- light curve <u>delayed</u> (hours/days/months, depending on θ_{view})

A DEDICATED STUDY ON THE CTAO'S PROSPECTS ON GW FOLLOW-UPS

Explore the parameter space of the GW-GRBs detectable by CTAO

- Physical parameters (luminosity, jet opening angles and jet orientation, spectral slope)
- Observational parameters (time delays, exposures)

CTAO Symposium

Compute the joint GW and CTAO detection rates from binary neutron star (BNS) mergers associated to GRBs (GW-GRBs)

Optimise the observing strategy

Maximise the detection rate Maximise the physical interpretation return Evaluate the amount of observing time

An evolved multi-messenger scenario on GWs and TeV-GRBs

Antonio Stamerra (INAF-OAR)

Simulation of BNS mergers and GW signal in local universe

Simulation of CTAO response (set of IRFs*) gammapy, ctools

CTAO Symposium

11

Synthetic GW-GRBs Phenomenological model of VHE emission of short-GRB

Observation optimisation and scheduler CTAO observing strategy

Antonio Stamerra (INAF-OAR)

- Gravitational wave catalogue of simulated binary neutron star (BNS) mergers from Petrov et al. 2022 for O5 (O6)
- ~2300 (8160) compact binaries in O5 (O6) detected

Simulation of BNS mergers and GW signal in local universe

Simulation of CTAO response (set of IRFs*) gammapy, ctools

CTAO Symposium

Synthetic GW-GRBs Phenomenological model of VHE emission of short-GRB

Observation optimisation and scheduler **CTAO observing strategy**

GW-GRB event

Synthetic GW-GRBs Phenomenological model of VHE emission of short-GRB

Phenomenological simulation of afterglow emission from short GRBs, built on short-GRB detections, GRB detections at TeV energies and flux upper limits by IACTs and X-ray observations

- Jet opening angle inferred from short-GRBs seen on-axis, average:~14deg
- **Viewing angle** from the inclination of the BNS
- **Lightcurve**: follows deceleration phase + similar temporal decay as in X-rays
- **Spectrum**: Photon index ~-2; Density of the external medium ~0.1 cm⁻³ \bullet
- Jet structure: Gaussian distribution for both energy and Lorentz factor

* IRF: Instrument Response Function

> Computation of CTAO sensitivity tailored on the GW-GRB models, including EBL absorption

> > CTAO Alpha configuration

ID 1378 exposure 16s delay: 63 s

Ackn.: Fabio Pintore

CTAO Symposium

14

- Optimised follow-up strategy for detection: the exposure is tuned to detect the source (Patricelli et al. 2018).
- Realistic observing conditions for CTAO are considered (Seglar-Arroyo et al. 2019)
- The Scheduler iterates on the best visible positions. If the true source position is covered, by construction, it is detected.

FIRST PRELIMINARY RESULTS - 1. DETECTABILITY

- Detection expectations by CTAO as a function of delay and exposure
- Based on the 2307 simulated GW-GRBs and the CTAO sensitivity (Alpha configuration)

FIRST PRELIMINARY RESULTS - 2. REALISTIC FOLLOW-UPS AND DETECTIONS

- Followed up GW-GRB events: 8% of the total population
- 4.5% of follow-ups covered the true location of the source
- on-axis events: 18% followed up; 10% covered the true location
- off-axis events: 7% followed up; 4% covered the true location

Realistic observing conditions for CTAO are considered (duty cycle, visibility).

No subarrays, and only North or South array

See also Monica Seglar-Arroyo et al. 2023 (TeVPa2023)

GW FOLLOW-UPS WITH CTAO. A SUMMARY

A new GW and TeV-GRB landscape emerged an expanded CTAO's science program

✓ Plethora of GW triggers expected --> Observing strategies and optimised followup observations required

✓ Groundwork laid with GW-GRB simulation chain for BNS during the LIGO-Virgo-KAGRA scientific run O5 (2027-2030)

New estimation of CTAO observation time required

CTAO-N and CTAO-S are key player in the transients and GW follow-ups!

Further effort will be devoted to the search of counterparts of binary blackhole and black hole-neutron stars mergers detected by the new generation of GW interferometers, like the Einstein Telescope and Cosmic Explorer

THE ERA OF GRAVITATIONAL WAVES

GW150914 (BBH)

CTAO Symposium

Einstein equation

$$R_{\alpha\beta} - \frac{1}{2}g_{\alpha\beta}R = \frac{8\pi G}{c^4}T_{\alpha\beta}$$

Perturbation: "strain"

Plus other parameters: Spin, orientation, mass ratio, nature of progenitor, localization...

amplitude

ed

Normali

8

6

4

2

0

THE ROLE OF OFF-AXIS OBSERVATIONS AND STRUCTURED JET

- light curve <u>Delayed</u> (hours-days-months,

ASSOCIATION GW-ELECTROMAGNETIC (EM) COUNTERPART: GW170817/GRB170817A

"At 12:41:06.47 UT on 17 August 2017, the Fermi Gamma-Ray Burst Monitor

Abbott et al. 2017, ApJL, 848, L13

The Role of Off-Axis Observations and structured Jet

Theoretical models (e.g. GRMHD simulations) predict a structured jet; confirmed by observations

Radio images of GRB170817/GW170817A 207 d after merger

Showing a compact emission with a large displacement, indication of a jet successfully breaking out the ejecta

GWS AND GRBS AT TEV ENERGIES

No detection of GeV-TeV emission from the counterpart of GW170817/GRB170817A

