

Prospect for detection of pair-echo emission from TeV gamma-ray bursts Davide Miceli, Paolo Da Vela, Giancarlo Ghirlanda, Lara Nava, Elisa Prandini

17/04/2024 CTAO Science Symposium 2024, Bologna

Magnetic fields in the Universe

Magnetic field seeds origin

Current B-fields detected

Amplification process

Dynamo amplification

Modern µG magnetic fields in galaxy and galaxy clusters

Intergalactic Magnetic field (IGMF) studies

The IGMF studies in the gamma-ray domain

How can gamma-ray probe IGMF properties (B strength and correlation length $\lambda_{\rm B}$)?

Search for the time-delayed 'pair-echo' cascade emission

8

GRBs for IGMF studies: a hot new topic

Flux

Pair-echo after end of TeV afterglow emission

Advantage: avoid pollution by source GeV emission

Source intrinsic properties

GeV source emission + pair echo emission with non-negligible IGMF

9

Flux

Pair-echo after end of TeV afterglow emission

Advantage: avoid pollution by source GeV emission

Source intrinsic properties

GeV source emission + pair echo emission with non-negligible IGMF

Purpose: calculate the pair-echo emission with *CRPropa* when GRB TeV afterglow is not detected anymore

- For the case of GRB190114C (z=0.42)
- For a generic GRB190114C-like source at different distance (z=1.0 and z=0.2)
- For GRB221009A (z = 0.15)
- For a generic GRB221009A-like source at larger distance (z = 1.0)

We estimated the pair-echo SEDs for:

- 3 IGMF strength values (10⁻¹⁹ G, 10⁻¹⁸ G, 10⁻¹⁷ G)
- 2 maximum energies for source photons (10 TeV and 50 TeV)
- 3 observational times compatible with IACTs capabilities (3, 6 and 9 hrs)

Comparison of pair-echo SEDs with MAGIC and CTAO-North sensitivities

Spectral energy distribution

- Primary GRB emission
- Secondary emission
- Observational time: 3 hours starting from 2400 s after trigger burst
- MAGIC and CTAO sensitivity derived and rescaled in time (S ∝ (1/vt))

Scaled GRB190114C (z = 0.2)

Scaled GRB190114C (z = 1.0)

Pair-echo after end of TeV afterglow emission

DM, Da Vela, Prandini, paper in publication

- A significant cascade contribution can be present also during fading phase of GRB afterglow emission
- Afterglow emission can vary of several order of magnitudes

• Model to estimate simultaneous afterglow+cascade contribution

Pair-echo emission + GRB afterglow convolution

$$F_{c}(E,t) = \int_{0}^{\infty} \int_{E}^{\infty} G(E_{0}, E, t - \tau, \tau) F_{s}(E_{0}, t - \tau) dE_{0} d\tau$$

Cascade Flux

Kernel describing the distribution in energy and time of the cascade signal

"Variability pattern" (Source intrinsic properties and time evolution)

18

Pair-echo emission + GRB afterglow convolution

Extrapolate GRB properties (spectrum and time evolution)

• We estimated the pair-echo LCs from a simulated GRB produced for the CTAO GRB Consortium Paper

- Assuming a smaller redshift (z=0.15) with same GRB properties
- Add a "jet break" at 10⁴ s (light curve steeping of a factor ∝ t⁻¹)

• Pair-echo emission becomes competitive with GRB afterglow at late times for $B > 10^{-19} G$ 21

Conclusions and future perspectives

- Gamma-Ray Bursts are promising sources for IGMF studies
- Pair-echo after end of TeV afterglow emission:
 - Extend observations for at least 3 hours after GRB detection
 - GRBs observations can probe IGMF strengths in the 10⁻¹⁷ 10⁻¹⁹ G → competitive with AGN studies!
- A new approach: pair-echo emission + GRB afterglow convolution:
 - Cascade seems to be competitive with afterglow at late-times (fading afterglow phase, jet break, ..)
 - Impact of intrinsic source features (distance, brightness, intrinsic spectrum shape and features, time evolution, jet break) to be investigated
- Future perspectives: investigate results with this approach on more GRBs and explore CTAO capabilities

BACKUP SLIDES

Intergalactic Magnetic field (IGMF) studies

Results on IGMF are typically given considering two regimes:

- Long correlation length $(\lambda_B >> \lambda_{IC})$ (motion in homogeneous B, ballistic e^{\pm})
- Short correlation length $(\lambda_B << \lambda_{IC})$ (diffusion in angle, diffusive e^{\pm})

Search for the time-delayed 'pair-echo' emission

$$E_{rep} \sim 0.32 \left(\frac{E_{\gamma}}{20 \ TeV}\right)^2 \text{TeV}$$

$$F_{delay} \sim F_0 \frac{T}{T_{delay} + T}$$

$$\begin{array}{ll} T_{delay} \propto B^2 \, E_{\gamma}^{-5/2} & \lambda_B >> \lambda_{IC} \\ T_{delay} \propto B^2 \, E_{\gamma}^{-2} \, \lambda_B & \lambda_B << \lambda_{IC} \end{array}$$

- 100s GeV photons experience shorter delays than GeV photons
- Weak B field (10⁻¹⁷ 10⁻²¹ G) are compatible short delays
- Stronger B are compatible with longer delays (and a more diluted cascade)

Pair-echo emission after GRB afterglow

Assumptions:

- Starting time for photon cascade counting: 3000 s
- Source time activity: MAGIC detection interval (40 min) for 14C and LHAASO detection interval for 09A (3000 s)
- No spectral variability with time
- Average flux emitted in afterglow phase
 - Log-parabola for 14C (MAGIC modeling)
 - Power-law with exponential cut-off for 09A (LHAASO results) 26

Gamma-ray Bursts in the VHE domain

	T ₉₀	$E_{\gamma,iso}$	Z	T _{delay}	E _{range}	IACT (sign.)
	S	erg		S	lev	
160821B	0.48	$1.2 imes 10^{49}$	0.162	24	0.5-5	MAGIC (3.1 σ)
180720B	48.9	$6.0 imes10^{53}$	0.654	3.64×10^{4}	0.1-0.44	H.E.S.S. (5.3 σ)
190114C	362	$2.5 imes 10^{53}$	0.424	57	0.3-1	MAGIC (> 50σ)
190829A	58.2	$2.0 imes10^{50}$	0.079	1.55×10^{4}	0.18-3.3	H.E.S.S. (21.7 σ)
201015A	9.78	$1.1 imes10^{50}$	0.42	33	0.14	MAGIC (3.5 σ)
201216C	48	$4.7 imes 10^{53}$	1.1	56	0.1	MAGIC (6.0 σ)
221009A	289	1.0 x 10 ⁵⁵	0.151	0-2400	0.5-18	LHAASO

Adapted from Miceli & Nava, 2022

- Long GRB
- $E_{\gamma,iso} \sim 2.5 \times 10^{53} \text{ erg}$
- z = 0.42

MAGIC detection info:

- T_{delay} ~ 57 s
- > 50σ in 20 minutes
- detection up to 40 min
- 0.3 1 TeV energy range
- moon conditions and Zd>50

GRB190114C

GRB190114C

Observed No γ - γ opacity EBL-deabsorbed

MAGIC soft spectrum:

- Klein-Nishina
- γ - γ internal absorption

GRB afterglow parameters: $E_k \gtrsim 3 \times 10^{53}$ erg $\varepsilon_e \approx 0.05$ -0.15 $\varepsilon_b \approx 0.05$ -1 $\times 10^{-3}$ $n \approx 0.5$ -5 cm⁻³ $p \approx 2.4$ -2.6

MWL LIGHT CURVES

 Sync+SSC external forward scenario

- Two modeling displayed:
 - X to TeV (solid lines)
 - Radio-optical (dotted lines)
 - SSC contribution (dashed lines)
- Indication of time-dependent afterglow parameters

GRB221009A

Α Energy flux [erg cm⁻² s⁻¹] 10^{_{} 10-′ 10⁻⁷ 10⁻⁸ d Β 2.6 Spectral Index 2. 2.2 10³ 10 10^{2} Time since T* [s] LHAASO Coll. et al., 2023

- Long GRB: The BOAT
- $E_{\gamma,iso} > 3 \times 10^{54} \text{ erg}$
- z = 0.15

LHAASO detection info:

- > 250σ in 230 3000 s
- 0.3 13 TeV energy range

e 4 • Istruzion³²e Ricerca

GRB221009A

Population of GRBs at VHE

- Broadband intrinsic properties:
 - span more than 3 orders of magnitude in $E_{\gamma,iso}$
 - Span 2 orders of magnitude in terms of L_{VHE}
 - ranging in redshift between 0.079–1.1
- X-ray TeV connection:
 - similar fluxes and decay slopes
 - similar amount of radiated power
- Data modeling:
 - SSC suggested (not conclusive)
 - no preferences on constant/wind-like medium
 - $\epsilon_{e} \sim 0.1, \epsilon_{B} \sim 10^{-5} 10^{-3}, \xi < 1$

