

AGILE perspective of GRB 221009A: theoretical implications of MeV-GeV-TeV coexistence in a multi-wavelength context

Foffano L., Piano G., and Tavani M., on behalf of the AGILE Team

AGILE gamma-ray sky during the GRB 221009A event

SuperAgile (SA) [18 – 60 keV]

AGILE satellite 2007-2024

more than 16 years of operations in space

amma-ray

imaging

detector

GRID

Large field of view of ~100° for the γ-ray sky monitoring

Continuous monitoring of the sky!

Spinning observation mode ~1 revolution / 420s

Unique combination of 2 co-aligned X-ray and γ-ray imaging detectors

Anti-Coincidence (AC) [50 – 200 keV]

> Silicon Tracker [0.03 – 50 GeV]

MiniCalorimeter (MCAL) [0.35 – 100 MeV]

- AGILE triggered GRB 221109A on the weak precursor at T_0 of *Fermi*-GBM on October 9, 2022, $T_0 = 13:16:59.99$ UT
- The brightest phase of the GRB occurred ~220 seconds after the first precursor at T_0 .
- AGILE was affected by saturation during the brightest phases of the GRB between ~ [220, 270 s]

- AGILE triggered GRB 221109A on the weak precursor at T_0 of *Fermi*-GBM on October 9, 2022, $T_0 = 13:16:59.99$ UT
- The brightest phase of the GRB occurred ~220 seconds after the first precursor at T_0 .
- AGILE was affected by saturation during the brightest phases of the GRB between ~ [220, 270 s]

- AGILE triggered GRB 221109A on the weak precursor at T_0 of *Fermi*-GBM on October 9, 2022, $T_0 = 13:16:59.99$ UT
- The brightest phase of the GRB occurred ~220 seconds after the first precursor at T_0 .
- AGILE was affected by saturation during the brightest phases of the GRB between ~ [220, 270 s]

Analysis reporting spectral evolution of AGILE MCAL and AGILE GRID over 6 main time windows

See poster by Giovanni Piano hard X-rays for more details on the analysis b d f е а С 70000 Anti-coincidence 60000 rate meters [Hz] 50000 40000 **AGILE GRID** 1st obs window 30000 20000 10000 0 300 600 700 800 9001000 200 400 500 Gamma-ray flux -10-2 \sim 10^{-3} [ph cm^{_} 10^{-4} c2 c1 10^{-5} 200 600 700 800 9001000 300 400 500

Analysis reporting spectral evolution of AGILE MCAL and AGILE GRID over 6 main time windows

2000

2000

Luca Foffano

CTA Symposium - 17/04/24

t - T0 [s]

8

Luca Foffano

CTA Symposium - 17/04/24

10

Spectral evolution

- MCAL shows a very rapid and rising hard X-ray flux
- Emission peaks at $E_{peak} \approx 3 \text{ MeV}$
- Low-energy spectral index is ~1
- Interpreted as **prompt emission** contribution in a **optically thick environment**

Spectral evolution

- Prominent hard GeV gamma-ray emission produced with a spectrum very different from the decaying MeV component
- **Co-existence** of the MeV prompt emission and an additional GeV-TeV component, which we attribute to inverse Compton afterglow emission
- Together with the TeV spectrum, it provides invaluable information

Spectral evolution

Spectral **hardening** in the GeV range as the overall flux decreases in the early phases of the afterglow

Relativistic fireball model

Extracted from P. Mészáros, M.J. Rees, Gamma-ray burst, 2014

- GRB afterglow emission due to **synchrotron** and **inverse Compton** radiation produced by relativistic fireballs expanding in the surrounding medium (e.g. Sari et al. 1998; Sari & Esin 2001)
- External shock model describing the adiabatic expansion of a relativistic blast wave in a medium with **density** $n(r) = A r^{-s}$
- Shock front expanding with bulk Lorentz factor $\Gamma(r)$, accelerating e⁻ e⁺ over a power-law energy distribution N(γ) = N₀ γ^{-p}
- Homogeneous magnetic field assumed to be co-spatial with the accelerating particles
- Developing a new software for the modeling of spectral evolution of GRBs [L.Foffano+, in preparation]

How do AGILE data constrain the modeling?

Paper in preparation: L.Foffano+2024

AGILE MCAL, AGILE GRID, and LHAASO data

New analysis of the AGILE GRID gamma-ray data, simultaneous to LHAASO data sets

How do AGILE data constrain the modeling?

Paper in preparation: L.Foffano+2024

New analysis of the AGILE GRID gamma-ray data, simultaneous to LHAASO data sets

How do AGILE data constrain the modeling?

Paper in preparation: L.Foffano+2024

New analysis of the AGILE GRID gamma-ray data, simultaneous to LHAASO data sets

Interpretation of GRB 221009A

Take home message from AGILE

Wow! GRB 221009A was extraordinary and very complex

AGILE fireworks!

AGILE obtained excellent data during the most important emission phases of GRB 221009A:

- excellent agreement of GeV AGILE spectral data with LHAASO spectral data
- crucial insights for the theoretical interpretation of this exceptional event
- useful to constrain both the synchrotron and the inverse Compton emission at gamma rays

Co-existence of MeV and GeV emission:

AGILE detected the **co-existence** of the MeV emission with the GeV-TeV afterglow emission.

This suggests the presence of two distinct emitting regions: an inner, likely optically thick region, and an optically thin, relativistically expanding region.

We must be ready! Great opportunities for CTA!

Prompt response of gamma-ray observatories to transients is crucial to provide essential information to the interpretation of these extreme events.

Thank you!

Luca Foffano

Backup

Luca Foffano

- Redshift $z = 0.15095 \pm 0.00005$ ~ 750 Mpc
- Fluence: >0.05 erg/cm²
- Brightest-of-all-time (BOAT)
 - \rightarrow Main burst caused saturation in many instruments, including AGILE

- Detected in gamma rays keV/MeV/GeV
- ✓ Detected by LHAASO at TeV energies
- Not detected by IACTs (full moon)
- No associated neutrinos

- AGILE detectors recorded the most intense part of the GRB 221009A activity with no Earth occultations and good exposure
- Good time intervals are dominant and provide crucial scientific value!

