Observation of Cygnus Region with LHAASO

Cong Li On behalf of LHAASO Collaboration 2024.4.17 Institute of High Energy Physics(IHEP),CAS

Origin of Cosmic Rays

randomized by Magnetic Fields in the Universe.

All-particle energy spectrum & composition by LHAASO

The large statistics
and rather small
systematic
uncertainty indicate
the "knee" is
dominated by light
component rather
than medium-heavy
component.

There is still no clue about the origins of CRs between the "knee" and the "ankle"

Physics Procedia 61 (2015) 425-434.arXiv:1910.03721v1

Cosmic ray anisotropy

 There might be sources in our galaxy accelerating particles to PeV or even up to EeV from the measurement of CRs at earth.

Possible Source Candidates

Many types of sources have the potential to accelerate particles to 1 PeV and above

A&A 671, A12 (2023) Science 10.1126/science.abg5137 (2021). The Astrophysical Journal, 913:115 (11pp), 2021 Jun

Location: 29°21′ 27.6″*N* 100°08′ 19.6″*E* Altitude: 4410*m a.s.l*

LHAASO sensitivity

- High sensitivity: Crab@3TeV@100T
- Wide energy range: sub-TeV to 10 PeV;

Large FOV:~1.8 sr

The 1st CR-Source Candidate by LHAASO

LHAASO discovers giant ultra-high-energy gamma-ray bubble, identifying the first Super PeVatron

- Discovering a giant ultra-high-energy gamma-ray bubble in the star-forming region of Cygnus, which extends to more than
- Positioning the source of cosmic ray with energy

The PeV Photon from Cygnus region

• 1.42±0.13 PeV from the Cygnus region

• Chance probility due to cosmic ray background 0.028% .

Nature 594:33-36 (2021)

A Bubble of UHE γ 's centered at a complex core

Energy (TeV)	Ne	Nu	Theta (deg)	Dr (m)
1087	5904	13	19.4	143
1188	5480	14	34.4	73
1208	6939	13	14.2	131
1350	6938	8	27.1	43
1379	6469	9	17.4	52
1421	6258	7	12.7	57
1784	6665	13	18.0	41
2481	13815	29	33.0	99

• The UHE photos are dispersed distributed, and are CTAO Science Symposium ot correlated with any small scale sources.

Significance [

Association with HI gas distribution over ~200 pc

• The significance map is smoothed with a Gaussian kernel=1.0°

Galactic Latitude [degree]

- The contour is from HI4PI 21-cm line survey
- Clear correlation with gas distribution indicating a hadronic origin of photons in the Bubble
 The signal is elongated along the disk and extends to 10°

Association with molecular cloud

16

14

10

Significance

High significance at UHE range

- The contour is from CfA galactic CO survey
- The significance map is smoothed with a Gaussian kernel of $\sigma=0.3^{\circ}$

10

Radial profile of the extended emission

- $F_{\gamma} = w_{CR} \times N_{HI+H2}$
- A very sharp distribution of gamma ray emission towards the center agree with CR propagation scenario and rule out a significant contribution from GDE.

Energy spectrum

Energy Bin	Non	Nb			
400TeV-630TeV	42	6.8			
630TeV-1PeV	14	1.9			
1PeV-1.6PeV	6	0.6			
1.6PeV-2.5PeV	2	0.2			
Almost background free					

The spectrum can extend beyond PeV without a cut-off at least up to 2PeV, which shows a slightly softening feature.

It is definitely a PeVatron, or even a Super-PeVatron

HE Protons injection from the core region

- High energy cosmic rays escape from the accelerator in the core
- Diffusing through the H1 gas and producing γ's in p-p collisions
- Hitting on clampy molecular clouds making hot-spots
- Slow diffusion ~1%DC in ISM

Fitting results

Energy-dependent cosmic ray bubble?

There is a large cosmic ray bubble, which implies a rather small propagation ecoefficiency around the source.

The size of bubble depends on the level of diffuse gamma.

Neutrino from Cygnus region?

The sensitivity of neutrino detector seems not enough now.

- A large scale extended emission from Cygnus direction is detected with spectrum beyond PeV, which implies a **Super-PeVatron**.
- CR interact with atomic gas and clampy molecular clouds on the way diffuse out very slowly forming the bubble and hot-spots
- The observation implies a large cosmic ray bubble extending hundreds of pc as the 1st candidate of the origin of cosmic rays beyond the knee