

Sarah Recchia

Cosmic ray propagation in the proximily of sources

Amato & Recchia 2024 - review Tev halos

- LHAASO)
- ø mot understood with current transport models
- o new window on CR propagation at multi-ter
- o many open questions
- @ what ASTRI Mini-Array could do superior angular resolution

o Tev halos detected around middle-aged pulsars (HAWC,

@ fast rotating highly magnetized NS ->> extracted e⁻ o copious pair production in magnetosphere \circ magnetized relativistic wind \longrightarrow spin down Eo outflow slow down due to ambient medium (SNR, ISM)

a termination shock -> bright non-thermal emission PWN \circ TS powerful accelerator (high efficiency, close to $E_{\rm max}$)

© e[±] pairs confined in Phine before release in ISM @ Cannot leave system while pulsar is in SNR \circ proper motion $v_{psr} \sim 100 s \text{ km/s} \longrightarrow \text{out of SNR} \approx 10 s \text{ kyr}$ o Bow shock --- particle release in ISM

in-SNR phase

Pulsars and cheir nebulae

- bow-shock phase

HALO

@ diffuse in ISM to d >> PWNe @ ICS on CMB ---- , Tev emission (e[±] of 10s-100s Tev) a Clean probe of CR transport in multi-TeV particles

Bow-shock PINNE and Tev halos

a Consider only middle-aged pulsars that are out of SNR (Lens $pc VS \leq pc$)

LHAASO: PSR J0622+3749

- @ secondary /primary
- ø unstable isotopes
- diffusion in Galactic halo ~ few kpc
- ø high energy less confined

 $O(E) \propto E^{0.3...0.7}$

o magnetic confinement

 $r_L \approx 10^{-6} \,\mathrm{pc} \,\mathrm{E_{GeV}/B_{\mu G}}$

Gabici et al. 2019 - review CRS

CR transport physics and data

parallel diffusion

sang

@ CR gyromotion ø field line walk o scattering off waves • $k \sim 1/r_L$ (resonance) o scattering mean free path $\lambda_{\rm mfp}$ $D_{\perp}(E) \lesssim D_{\parallel}(E)$ • $D_{\parallel}(E) \propto \lambda_{\rm mfp}$

Mertsch 2020 - review Eurbulence & Eransport

CR transport physics and data

perp. transport

MHD Eurbulence

o CR jump between lines @ large-scale perp diffusion

@ source injection (10s pc) @ cascade to $k \sim 1/r_L$? o damping? @ Produced by CRs?

Schalchi 2020 - review perp. Transport

highly turbulent ISM

- © small L_{coh} << size
- @ 3D isotropic diffusion
- @ Small D

o spherical morphology

anisotropic transport

 $\circ L_{\rm coh} \gtrsim size$

- o typical D_{\parallel} , $D_{\perp} \ll D_{\parallel}$
- o emission morphology depends on flux-tube orientation
- o elongated structures

@ 10-200 TeV e^{\pm} , ICS on CMB

- $\bullet E_e \sim 100 \,\mathrm{TeV}$, $E_\gamma \sim 20 \,\mathrm{TeV}$
- @ age ~ 100s kyr
- @ distance ~ 300 pc
- o 10s pc extension

highly Eurbulent ISM

 \circ small $L_{\rm coh}$ << size ---> small $\lambda_{\rm mfp}$ @ 3D isotropic diffusion & small D @ energy losses CMB/B $\tau_{\rm CMB} \approx 10 \, \rm kyr$

 $R_{\rm halo} \sim \sqrt{4D\tau_{\rm CMB}} \sim 30 {\rm pc} \sqrt{D_{27}\tau_4}$

Dhalo Dhalo

- problems with morphology

- o self-generated turbulence
 - Difficult even with flux-tube and high efficiency

3D isotropic diffusion

 10^{-37} $M_A = 0.2$ $E_{\gamma} = 20$ TeV ~ 0.002 50 -50 z axis [pc]

Lopez-Colo & Giacinhi 2018

anisotropic diffusion

more realistic setup?

o non-spherical emission o orientation of B field o separation y-ray source - pulsar o filamentary structures

10-3

 $\sigma_{\rm PWN} \lesssim 1 \, {\rm pc}$

 $L_{\rm coh} \approx$

 $\theta \lesssim 0.2^{\circ}$ (d = 300 pc) 0 $\theta \lesssim 0.02^{\circ}$ (d = 3 kpc) 0

 $\theta \lesssim 2 - 4^\circ$ 0 $\theta \quad \theta \lesssim 0.2 -$

Possibilities with ASTRI Mini-Array

ASTRI science paper 2022

	ASTRI Mini-Array	HAWC	LHAASO
Location	28° 18′ 04″ N	18° 59′ 41″ N	29° 21′ 31″ N
	16° 30′ 38″ W	97° 18′ 27″ W	100° 08′ 15″ E
Altitude [m]	2,390	4,100	4,410
FoV	~ 10°	2 sr	2 sr
Angular Res.	0.05° (30 TeV)	$0.15^{\circ(a)}$ (10 TeV)	$(0.24-0.32)^{\circ(b)}$ (100 TeV
Energy Res.	12% (10 TeV)	30% (10 TeV)	$(13-36)\% (100 { m TeV})^{(b)}$
Energy Range	(0.3-200) TeV	(0.1-1000) TeV	(0.1-1000) TeV

halo asymmetry

$$(d = 300 \text{ pc})$$

 $0.4^{\circ} (d = 3 \text{ kpc})$

$$\propto \sqrt{D_{\parallel}/D_{\perp}}$$

$$\bullet$$
 L/H $\approx 3-10$

Possibilities with ASTRI Mini-Array

o superior angular resolution

- ø discriminating morphological features
 - filamentary structures
 - separation pulsar TeV source
 - asymmetry in halo shape

	ASTRI Mini-Array	HAWC	LHAASO
Location	28° 18′ 04″ N	18° 59′ 41″ N	29° 21′ 31″ N
	16° 30′ 38″ W	97° 18′ 27″ W	100° 08′ 15″ E
Altitude [m]	2,390	4,100	4,410
FeV	~ 10°	2 sr	2 sr
Angular Res.	0.05° (30 TeV)	$0.15^{\circ(a)}$ (10 TeV)	$(0.24-0.32)^{\circ(b)}$ (100 TeV
Energy Res.	12% (10 TeV)	30% (10 TeV)	$(13-36)\% (100 \text{TeV})^{(b)}$
Energy Range	(0.3-200) TeV	(0.1-1000) TeV	(0.1-1000) TeV

need for targeted analyses on Geminga-like pulsars
bias on spherical shape?
go beyond analyses that assume spherical symmetry

1. HAWC paper (2017)	htt
2. LHAASO paper (2021)	htt
3. Gabici et al. (2019)	htt
4. Mertsch (2020)	htt
5. Shalchi (2020)	htt
6. Lopez-Coto & Giacinti (2018)	kee
7. Liu et al. (2019)	ktt
8. De la Torre et al. (2022)	hee
9. Evoli et al. (2018)	http
10. Mukhopadhyay & Linden (2022)	http
11. Martin et al. (2022)	heer
12. ASTRI science paper (2022)	http

Thank you - references ps://doi.org/10.1126/science.aan4880 ps://doi.org/10.1103/PhysRevLett.126.241103 ps://doi.org/10.1142/50218271819300222 ps://doi.org/10.1007/s10509-020-03832-3 ps://doi.org/10.1007/s11214-020-0644-4 ps://doi.org/10.1093/mnras/sty1821 ps://doi.org/10.1103/PhysRevLett.123.221103 ps: //doi.org/10.1103/PhysRevD.106.123033 ps://doi.org/10.1103/PhysRevD.98.063017

ps: //doi.org/10.1103PhysRevD.105.123008 ps://doi.org/10.1051/0004-6361/202243481 os://doi.org/10.1016/j.jheap.2022.05.005