The contribution of Stellar Clusters to Galactic Cosmic Rays constrained by gamma-ray observations

Giada Peron – CTA Symposium – 17.04.2024

Cosmic rays challenges to the SNR paradigm

Spectrum

Cosmic (Fe=1) source GCR

Composition

Tatischeff et al. 2021

Cosmic rays The role of Star Clusters

Only convincing hadronic PeVatron in the region of Cyg-OB2¹ SCs are energetic enough to contribute to CRs ~ 10^{41} erg/s (in total)

Composition

Tatischeff et al. 2021

Cosmic rays The role of Star Clusters

Only convincing hadronic PeVatron in the region of Cyg-OB2¹ SCs are energetic enough to contribute to CRs ~ 10^{41} erg/s (in total)

Composition

Tatischeff et al. 2021

Star clusters

Star clusters

Star clusters In the Milky Way

SCs from Gaia-DR3 Age < 30 Myr

Star clusters In the Milky Way

SCs embedded in HII regions Age ≤ 3 Myr

Stahler & Palla 2005

Plate 3 Negative optical photograph of three HII regions in the Gem OB1 association. The regions span a total distance of 9 pc

Plate 4 Expanded near-infrared (J, H, and K) image of Gem OB1. The bright nebula in the center lies between the left and center HII regions of Plate 3, and is invisible optically.

Star clusters How many are gamma-ray emitters?

- How many overlaps are there between SCs
- and gamma-ray sources?

How significant is this overlap?

Star clusters How many are gamma-ray emitters?

- How many overlaps are there between SCs
- and gamma-ray sources?—> we cross-match SC
- (Gaia and WISE) catalogs to gamma-ray catalogs
- How significant is this overlap? \rightarrow we compare the results
- with simulations to assess the matching significance

The match is defined on a geometrical basis: match if their distance $< R^*$

Peron et al. 2024, in prep.

R of the HII region R of the SCs (50% of stars) R of the termination shock R of the bubble

The match is defined on a geometrical basis: match if their distance $< R^*$

Peron et al. 2024, in prep.

Compared to simulations of 1000 synthetic catalogs (from MC simulations)

To evaluate matching significance:

$$\Sigma = \frac{N_{match}^{real} - \langle N_{match}^{sim} \rangle}{\sigma(N_{match}^{sim})}$$

The match is defined on a geometrical basis: match if their distance < R*

Peron et al. 2024, in prep.

Compared to simulations of 1000 synthetic catalogs (from MC simulations)

To evaluate matching significance:

$$\Sigma = \frac{N_{match}^{real} - \langle N_{match}^{sim} \rangle}{\sigma(N_{match}^{sim})}$$

The match is defined on a geometrical basis: match if their distance < R*

Peron et al. 2024, in prep.

Compared to simulations of 1000 synthetic catalogs (from MC simulations)

To evaluate matching significance:

$$\Sigma = \frac{N_{match}^{real} - \langle N_{match}^{sim} \rangle}{\sigma(N_{match}^{sim})}$$

> Extended and more concentrated on the Galactic Plane therefore more affected by chance coincidence

The match is defined on a geometrical basis: match if their distance $< R^*$

Peron et al. 2024, in prep.

> Extended and more concentrated on the Galactic Plane therefore more affected by chance coincidence

> Harder to be detected [see Celli & Peron 2024 arXiv:2403.03731]

Star clusters Detected in gamma rays

10³²

1030

Peron et al. 2024, in prep.

The brightest SCs have detectable Fermi-LAT emission coincident with the HII gas regions

At TeV-energies the situation is more complicated by large extensions and overlap with PSRs

 R_{TS}/R_{SC}

Star clusters In the Vela Molecular cloud Ridge

Peron et al. Nature Astronomy 2024

Star forming complex at ~1-2 kpc Evidence of excess in 3 HII regions

Star clusters Acceleration efficiency $\eta = \underbrace{\downarrow_{CR}}_{\downarrow}$

We derive L_{CR} from L_{γ} assuming full confinement in a pion-decay scenario

 $\sim E^{-\alpha_{CR}+2}$

 $\delta = 0.3$

 $D_0(E_0 = 1 GeV) < 1.7 \times 10^{28} \text{ cm}^2 \text{s}^{-1}$

 $t_{esc} \sim 7.6 \times 10^{11} \text{s} < t_{pp} \sim 1.6 \times 10^{12} (n/1000 \text{ cm}^{-3})^{-1} \text{ s}$

Peron et al. Nature Astronomy 2024

Diffusion is suppressed but not enough to retain particles

 $L_{CR}[measured] < < L_{CR}[real]$

Peron et al. Nature Astronomy 2024

Canto' et al. 2000 [Simulations]

 $\dot{M} \sim 10^{-4} M_{\odot} yr^{-1}$ $v \sim 1000 \text{ km s}^{-1}$ $R \sim R_{HII} \sim R_{\gamma}$

Star clusters

Acceleration efficiency $\eta = \frac{L_{0}}{-1}$

Source	Age [Myr]	N [1E3 cm-3]	Efficiency [%]
RCW 32	2	1.9	0.85
RCW 36	1.1	2.6	0.79
RCW 38	0.5	2.1	4E-03

 $\epsilon_{_{W}}$

Peron et al. Nature Astronomy 2024

 $\mathcal{F}_{w}[real]$ $\mathcal{P}_{CR}^{tot} = 7 \times 10^{40} \mathrm{erg s}^{-1}$

From isotopic ratio:

 $\epsilon_{winds} X_{winds} + (1 - \epsilon_{winds}) X_{ISM} = X_{CR} \rightarrow \epsilon_{winds} \simeq 16\%$

Celli & Peron 2024 arXiv:2403.03731v1

Conclusions

- of the enhanced target around these regions;
- Embedded clusters are **young** therefore they are not influenced by SN explosions;
- stellar winds, consistently with the estimate based on composition;
- The real **efficiency is larger** as it should account also for escaped particles;
- energy band.

• We detected GeV gamma-ray emission in correspondence of a few **embedded star clusters**;

• We showed that the coincidence is statistically significant and is interpreted as a consequence

• The derived efficiency suggests that a small part of galactic cosmic rays is contributed by

• More observations will come to help constraining these values and to shed light on the TeV

Conclusions

- of the enhanced target around these regions;
- Embedded clusters are **young** therefore they are not influenced by SN explosions;
- stellar winds, consistently with the estimate based on composition;
- The real **efficiency is larger** as it should account also for escaped particles;
- energy band.

• We detected GeV gamma-ray emission in correspondence of a few **embedded star clusters**;

• We showed that the coincidence is statistically significant and is interpreted as a consequence

• The derived efficiency suggests that a small part of galactic cosmic rays is contributed by

• More observations will come to help constraining these values and to shed light on the TeV

