Pulsars in VHE gamma rays

Emma de Oña Wilhelmi DESY Zeuthen

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Large rotational power Ė with EMF ~10⁷ V => Extract charged particles from neutron star surface

> Fill the magnetosphere with dense plasma ρ_{GJ} => Enough e± pairs to achieve force-free condition

Particle accelerations only possible in regions with $\rho < \rho_{GJ}$ => Gaps around open magnetic lines

Radio, X-ray and Gamma-ray pulses => rotating light beams sweeping past the Earth

Pulsars as extreme accelerators and non-thermal sources

Pulsars are brightest Galactic sources at 1 GeV and the most numerous Galactic source population

Gamma-ray sky at 1 GeV

Pulsars are brightest Galactic sources at 1 GeV and the most numerous Galactic source population

The LAT spectra in the GeV regime

The Spectrum in the GeV regime

Peak at lower energies

3PC, LAT Collaboration 2023

The Very-high Energy Regime

		Age [kyr]	D [kpc]	Ė/d² [erg/s]	~E _{max} [TeV]	Γ_{VHE}
Cral	b	1.2	2	5x10 ³⁸	1.5	3. – 3.5

Crab:

detected by MAGIC/VERITAS 2015, after 320/107 hours of observation

Crab Pulsar, VERITAS Collaboration 2015

IACTs Pulsars: the Crab pulsar

Crab Pulsar, MAGIC Collaboration 2017

- => First case of departure from exp-cutoff
- => One or two components?
 => Inverse Compton (but absorption)

First IACT pulsar First TeV pulsar First CTA pulsar

Don't miss poster by G. Brunelli et al.

IACTs Pulsars: the Crab pulsar

Don't miss talk by D. Green

Phasogram of Crab Pulsar as measured by the LST-1. Credit: LST Collaboration

Comparable to MAGIC with two telescopes => detected above 5 σ in 25h

	Age [kyr]	D [kpc]	Ė/d² [erg/s/kp c²]	~E _{max} [TeV]	Г _{VHE}
Crab	1.2	2	5x10 ³⁸	1.5	3. – 3.5
PSR B1706-44	18	2.6	6x10 ³⁵	0.075	3.76
Geminga	340	0.2	7x10 ³⁵	0.070	3.8

Page 16

Similar trends:

Departs from an exponential cutoff => **Pulsars with tails** Coherence in light curve (evolution with energy)

Phasogram of Geminga Pulsar as measured by the LST-1. Credit: LST Collaboration / Mas-Aguilar et al 2023

Vela

	Age [kyr]	D [kpc]	Ė/d² [erg/s/kp c²]	~E _{max} [TeV]	Γ _{νнε}
Crab	1.2	2	5x10 ³⁸	1.5	3. – 3.5
PSR B1706-44	18	2.6	6x10 ³⁵	0.075	3.76
Geminga	340	0.2	7x10 ³⁵	0.070	5.62
Vela	11	0.3	1x10 ³⁸	0.1	4.1

Peak evolves with energy

ge 19

HESS Collaboration et al 2023

One of the hardest TeV sources

In the K-N regime:

 $\gamma_{IC}^{max} \gtrsim 4 \times 10^7 (E_{\rm TeV}/20 {\rm ~TeV})$

	Age [kyr]	D [kpc]	Ė/d² [erg/s/kpc²]	~E _{max} [TeV]	Г _{ине}
Crab	1.2	2	5x10 ³⁸	1.5	3. – 3.5
PSR B1706-44	18	2.6	6x10 ³⁵	0.075	3.76
Geminga	340	0.2	7x10 ³⁵	0.070	5.62
Vela	11	0.3	1x10 ³⁸	0.1	4.1
Vela+				20	1.4

Meanwhile in the theory side...

New theoretical ideas and simulations based on Particle-in-Cell have been developed to understand more complex dissipative magnetosphere

Systematic modeling of pulsar light curves and spectra

- => Most particle acceleration occurs high in the magnetosphere and/or beyond
- => Multiple acceleration regions/components Gaps vs Stripped winds

(ii) Wind models:Magnetic reconnectioncurrent sheet; non-ideal MHD;SR / IC

HESS Collaboration et al 2023

* **CAVEAT**: Same particle population emitting at HE and VHE!

We fit HE and VHE to constrain emission region*

 $E_{\rm CR}^{\rm max} \simeq 5 \,{\rm GeV}\,\xi^{1/2}\eta_{-1}^{3/4}$

Curvature radius

Magnetic conversion efficiency

Curvature in gaps (outer gaps or separatrix/current sheets).

HESS Collaboration et al 2023

Curvature in gaps (outer gaps or separatrix/current sheets).

HESS Collaboration et al 2023

Synchrotron in wind plasmoids

$$\gamma_{
m SR}^{
m max} \simeq 1.3 imes 10^6 (B_{\perp}/B_{
m LC})^{-1/2} \, (E_{
m SR}^{
m max}/1.5 \, {
m GeV})^{1/2}$$

HESS data:

 $\gamma_{\rm IC}^{\rm max} \gtrsim 7 \times 10^7$

Some alternatives:

- * Escape of the highest particles
- * Doppler-boosted emission

Open Questions and ongoing activities

- What's the nature of the tails? Inverse Compton?
 Where is the radiation produced?
- What's the nature of the multi-TeV component? Are there more pulsars like Vela? Surely there are!
- What about Crab?
- What can we learn? Is the density of the electrons ~ ρ_{GJ} Maximum Lorentz factor / Energy Constrains on the Op/IR photon fields
- Extreme e⁺⁻ accelerators => Cosmic ray electrons

Open Questions and ongoing activities

- What's the nature of the tails? Inverse Compton?
 Where is the radiation produced?
- What's the nature of the multi-TeV component? Are there more pulsars like Vela? Surely there are!
- What about Crab?
- What can we learn? Is the density of the electrons ~ ρ_{GJ} Maximum Lorentz factor / Energy Constrains on the Op/IR photon fields
- Extreme e⁺⁻ accelerators => Cosmic ray electrons

Open Questions and ongoing activities

Continuing Pulsar observations with IACTs,
 Goal: probe the >20 TeV spectrum

=> Techniques to improve Effective Area > 10 TeV

- Search on the database: 20 years of data available
- Probing other promising pulsars for VHE emission using the first CTA prototypes

Major science case for CTA

Summary

Opening the pulsed TeV emission

- Four pulsars have been detected with IACTs
- Despite the long observation times used for the first ones, the new discoveries are reachable in moderated time (Tobs < 100 h)
- These detections open more questions and boost the field of pulsars
 - An unambiguous handle on Lorentz factors > $4x10^7$
 - VHE emission, i.e. dissipation region beyond but close to LC (even in the Doppler-boosted scenario)
 - Challenges for both CR/IC and SR/IC scenarios => to be continued!

 $E_{\rm HE}^{\rm peak} \sim 1.5~{\rm GeV}$

• To reach the TeV level, we need to extrapolate the photon field o the FIR:

