

Multi-wavelength view on M87 during the 2018 EHT campaign including a gamma-ray flaring episode

Principe Giacomo*

University of Trieste, Trieste, Italy; INFN-Trieste, Trieste, Italy; IRA-INAF, Bologna, Italy;

*on behalf of the EHT-MWL science-working group, EHT, Fermi-LAT, H.E.S.S., MAGIC, VERITAS and EAVN coll.

Content

Presentation content

- 1. Short Recap M87-2017 results
- 2. Instrument coverage for 2018 EHT-MWL campaign
- 3. M87-2018 source status (preliminary results)
- 4. Preliminary MWL lightcurve
- 5. Preliminary SED and modelling
- 6. Outlook

This presentation contains confidential material (under embargo), please do not distribute it! The paper will be submitted soon!

50 µas		\bigcirc
April 5	April 6	April 10
	•	•

 $M87^*$

EHT coll. et al. 2019

April 11, 2017

Recap M87-2017 results

Summary instrument coverage: 2018 EHT-MWL observations

MWL image

During 2018 EHT-MWL observational campaign the M87 jet is imaged at all scales from \sim 1 kpc down to a few Schwarzschild radii.

EHT results: persistent event horizon, change in the micro-arcsec scale of the ring assymetry position

EHT coll. et al. 2019

EHT coll. et al., 2024

Radio

M87-2018 MWL status

- radio emission was comparable or even lower w.r.t. 2017 one at both cm and mm wavelengths
- similarly to EHT 2018 results (which reveals a significant shift of the PA of the brightness asymmetry of the ring), we
 observed a change in jet position angle (VLBA) indicating the presence of year-scale structural evolution transverse
 to the jet (for more information see <u>Cui et al., 2023</u>)

M87-2018 MWL status

X-ray & HE gamma-ray

- a flux increase (a factor 2) was observed in the X-ray band (Chandra+NuSTAR) w.r.t. 2017 observations
 > due to the lack of time constraint there is no clear evidence for its connection to the VHE flare
- HST1 was clearly subdominant in the X-ray, while core and outer jet had a similar emission
- corresponding to the VHE gamma-ray flare (next slide) a flux enhancement (about 8x the average flux) was seen also by Fermi-LAT at energies above 100 MeV

M87-2018 MWL status

VHE gamma-ray

- During the 2018 observational campaign we detected a short VHE (E>100 GeV) gamma-ray flaring episode (the first since 2010)
- Hint for a spectral hardening was observed during the flare (observed by H.E.S.S.)

Semi-transparent points obtained scaling the original data with the fudge factors derived from the best Gaussian fit.

MWL lightcurve

We compare the 2018 M87 status and the observed gamma-ray flaring episode with historical MWL observations. During the 2018 observational campaign **we detected a short VHE (E>100 GeV) gamma-ray flaring episode** (the first since 2010).

The observed variability time scale indicates that the characteristic size of the VHE gamma-ray emitting region ($R_{VHE}\sim 2~R_{EHT}$, for a Doppler factor = 1)

$$R_{\rm HE} \lesssim 8r_g \delta\left(\frac{\Delta t}{3 \text{ days}}\right)$$

$$R_1 = R_{\rm EHT}$$

$$R_2 = R_{\rm HE}$$

MWL lightcurve

Date 2017 2018 2019 MAGIC + HESS + VERITAS + ⁻¹¹ cm⁻²s⁻¹ - E>350 GeV 0 C 5 5 🔶 Fermi 0.1-1000 GeV cm⁻²s⁻¹ 10 Chandra HST-1 (2.0-10 keV) + Chandra Core (2.0-10 keV) 🛧 Chandra Core (2.0-10 keV) Imazawa et al. 2021 erg cm⁻²s **Preliminary** 10 Swift-XRT Flux (core+ HST-1+jet) Swift-XRT Total Flux £ erg -010 2,5 🔶 EHT 230 GHz SMA 1.1 mm (250-270 GHz) ALMA 221 GHz SMA 1.3 mm (210-250 GHz) + SMA 0.87 mm (326-345 GHz) 2.0 ≥ _{1.5} 1.0 0.5 KVN 86 GHz peak 🔶 KVN 129 GHz peak + GMVA+ALMA 86 GHz 1,5 ≥_{1.0} 0.5 2.25 + VLBA 24 GHz peak * EAVN/KaVA 22 GHz peak VERA 22 GHz peak + EAVN/KaVA 43 GHz peak ✤ VLBA 43 GHz peak VERA 43 GHz peak 2.00 1.75 <u>≥</u> ^{1.50} 1.25 1.00 0.75 0.50

57800

57900

58000

58100

58200

MJD

58300

58400

58500

We compare the 2018 M87 status and the observed gamma-ray flaring episode with historical MWL observations on:

- short time scales (April 2018)
- mid time scales (2017-2019)
- long time scales (2000-2022)

MWL lightcurve

We compare the 2018 M87 status and the observed gamma-ray flaring episode with historical MWL observations on:

- short time scales (April 2018)
- mid time scales (2017-2019)
- long time scales (2000-2022)

M87-2018 MWL SED

2017 SED plotted in grey for a comparison

Chandra+NuSTAR BPL derived with a stacked analysis of 14 NuSTAR observations (*Sheridan et al., in preparation*)

12

SED Model A

Two single-zone models				
Model	A (EHT) ⁵	A (HE)		
δ	1	1.82		
$R[r_g]^{1/2}$	5.0	10.0		
$n'_{\rm e} [{\rm cm}^{-3}]^{3}$	2.0×10^{6}	1.7×10^{1}		
<i>B</i> ′ [G]	5.3	2.3×10^{-2}		
$\gamma_{ m min}$	1	5×10^{3}		
$\gamma_{ m br}$	_	7×10^{6}		
$\gamma_{\rm max}/10^6$	1.0	50		
p_1	3.0	3.0		
p_2	_	2.0		
$U_{ m e}/U_{ m B}$ 4	2.9	6.7×10^{3}		

A broken power-law was used to explain the observed hardening of the VHE spectrum.

The hard electron spectrum approximates the effect of inefficient cooling in the Klein-Nishina regime.

SED Model A BPL

Main results:

- We detected the first VHE γ-ray flare from M87 since 2010 and identify a hint for a spectral hardening during the outburst
- A likely longer-term core flux enhancement was observed in the X-ray band by Chandra
- While radio and mm core fluxes are compatible with the emission seen in April 2017, VLBA observations present a clear change (on annual basis) of the jet-position angle similar to the micro-arcsec scale ring assymetry position seen by EHT
- Although the presence of the flaring episodes allowed us to constrain the size of the VHE γ-ray emitting region in the SED modelling, its location is still uncertain.

<u>Outlook</u>

- Our results show the value of continued multi-wavelength monitoring together with precision imaging
- The gamma-ray flare itself presents a challenge to simpler modelling approaches, emphasising the need for more detailed, structured models.

Paper will be submitted soon!

Thanks for your attention