Black hole X-ray binaries: the missing PeVatrons?

Dimitris Kantzas LAPTh/CNRS

with Francesca Calore and S. Markoff, M. Lucchini, C. Ceccobello, K. Chatterjee, A. Cooper, D. Gaggero, P. De La Torre Luque, M. Petropoulou

Image Credit: NASA/CXC/M.Weiss

Cosmic-ray sources

Galactic: up to PeV/knee

Extragalactic: ~ankle

Indirect cosmic-ray detection

 $\pi^0 \rightarrow 2\gamma$

 $p + p/\gamma \rightarrow p + \alpha \pi^0 + \beta(\pi^+ + \pi^-)$

PeVatron identification (mostly PWNe)!

Image Credit: Nick Risinger

prompt

Indirect cosmic-ray detection

 $\pi^0 \rightarrow 2\gamma$

 $p + p/\gamma \rightarrow p + \alpha \pi^0 + \beta(\pi^+ + \pi^-)$

 $\pi^{\pm} \rightarrow \mu^{\pm} + V_{\mu}$ $\mu^{\pm} \rightarrow e^{\pm} + V_{e} + V_{\mu}$

Image Credit: Nick Risinger

Small scale astrophysical jets

Black hole X-ray binaries (BHXBs)

Relativistic jets

Strong magnetic field

Efficient particle acceleration

Between quiescence and outburst

quiescence

outburst

~10% of lifetime

Between quiescence and outburst

quiescence

e.g. A0620-00 (Dinçer et al. 2018) GX339-4 (Tremou et al. 2020) BW Cir (Plotkin et al. 2021) MAXI J1348–630 (Carotenuto et al. 2022) MWC 656 (Dzib et al. 2015) V404 Cygni (Rana et al. 2016) XTEJ1118+480 (Gallo et al. 2014)

mage Credit: NASA/CXC/M Weis

outburst

~10% of lifetime

$\gtrsim 50 \text{ BHXBs}$

Image Credit: NASA/CXC/M.Weiss

Between quiescence and outburst

quiescence

e.g.

A0620-00 (Dinçer et al. 2018) GX339-4 (Tremou et al. 2020) BW Cir (Plotkin et al. 2021) MAXI J1348–630 (Carotenuto et al. 2022) MWC 656 (Dzib et al. 2015) V404 Cygni (Rana et al. 2016) XTEJ1118+480 (Gallo et al. 2014) outburst

~10% of lifetime

$\gtrsim 50 \text{ BHXBs}$

mage Credit: NASA/CXC/M.Weiss

Image Credit: NASA/CXC/M.Weiss

A0620-00 in quiescence

20 TeV max proton energy at $z_{diss} = 73R_g$

No Fermi/CTA detection

D. Kantzas et al. submitted (MW data from <u>Dincer et al. 2018</u>)

see also <u>Galo et al. 2006, Connors et al. 2017, dePolo et al. 2022</u>

Population of BHXBs: bulge

Population of BHXBs: disc

25

Prompt emission detected by NuSTAR

Prompt emission detected by NuSTAR

Prompt emission detected by NuSTAR

~10% contribution of BHXBs to the Galactic keV diffuse emission

Prompt emission detected by INTEGRAL

Prompt emission detected by INTEGRAL

Prompt emission detected by INTEGRAL

Prompt emission detected by CTA

Take home message

Quiescent black hole X-ray binaries:

- may accelerate CRs @ ~20 TeV PeVatron
- may contribute:
 - 1-20% @ keV, > 20% @ 100 keV,
 - ~a few % @ 1MeV
 - \circ <1% @ GeV and TeV
 - <1% @ TeV neutrinos
- 1±1 to be detected by CTA

Backup slides

A multi-zone, jet model with hadronic interactions

A0620-00 in quiescence

20 TeV max proton energy at z_{diss}=73R_g

> No Fermi/CTA detection

D. Kantzas et al. submitted (MW data from Dincer et al. 2018)

Prompt emission and Fermi/LAT

D. Kantzas et al. submitted (Fermi data and regions from Ackermann et al. 2012)

Prompt emission and IACTs (HESS)

D. Kantzas et al. submitted (HESS data from HESS 2018)

Prompt emission and IACTs (HAWC)

D. Kantzas et al. submitted (HAWC data from Alfaro et al. 2024)

Prompt emission and IACTs (LHAASO)

D. Kantzas et al. submitted (LHAASO data from from Cao et al. 2023)

Prompt neutrinos and IceCube diffuse emission

D. Kantzas et al. submitted (IceCube data from IceCube 2023)

Contribution of black hole XRBs to the CR proton spectrum

Kantzas et al. 2023b

Contribution of black hole XRBs to the γ -ray spectrum

HERMES High-Energy Radiative MESsengers

Dundovic et al. 2021

- /. /

$$p + p/\gamma \rightarrow p + \alpha n^{\circ} + \beta (n^{\circ} + n^{\circ})$$

 $\pi^{\circ} \rightarrow 2\gamma$

Kantzas et al. 2023b

Contribution of black hole XRBs to the neutrino spectrum

