Black holes: new perspectives (in the EHT+MM era)

200 Rg

Sera Markoff (U Amsterdam) + EHT/ngEHT Collaborations & EHT MWL WG + CTAC + several current/former members of the 'jetsetters' group @ U Amsterdam (K. Chatterjee, R. Duncan, D. v.Eijnatten, C. Hesp, D. Kantzas, M. Liska, M. Lucchini, W. Mulaudzi, G. Musoke, S. Praharaj, R. Roy, L.S. Salas, D.-S. Yoon) + J. Davelaar, S. Phillipov, B. Ripperda, S. Tchekhovskoy, Z. Younsi

How do black holes grow, and release and transport energy to the largest scales?

(Combined LOFAR radio + Chandra Xray image of Cyg A; Wise & McKean)

Measure integrated jet power via lobes

- Feeding conditions? Duty Cycle?
- Inner accretion geometry?
- Black hole spin is jet power?
- Jet composition/hadrons?
- Dynamics heat/accel in light/particles?
- Relevant for stellar compact objects!

Physics of gravity-powered phenomena seems to be universal

CRAB

TDE "artist impression"

Supermassive black holes ⇔ CRs, neutrinos!

TXS 0506+056

NGC 1068 = Seyfert II...?! IceCube Collaboration 2018; 2022, Science Famous AGN blazar system 3C273 (Jester++2006):

Supermassive black holes ⇔ CRs, neutrinos!

IceCube Collaboration 2018; 2022, Science

Understanding = localising: particle acceleration and VHE **y**-rays

3C273 (Jester++2006), jet "colour" (wavelength) traces particle acceleration: Blue: X-rays (Chandra), Green: Optical (HST), Yellow: Optical & Peak Radio, Red: Radio (VLA)

Magnetospheres

e.g. Rieger & Mannheim 2000; Rieger & Aharonian 2008; ... Parfrey, Philippov & Cerutti 2019; Bransgrove, Ripperda & Philippov 2021; Hakobyan, Ripperda & Philippov 2023; + work by many others...

Shocks/shear/turbulence (umbrella terms for many mechanisms)

eg. Crumley++2019, Sironi++2021; and see numerical/semi-analytical work by eg, Aharonian; Bai; Bell; Böttcher; de Gouveia Dal Pino; Drury; Giannios; Jokipii; Kirk; Lazarian; Marscher; Oikonomou; Petropoulou; Reimer; Reville; Winter; ++ many many others...

LHAASO revolution!

- ~100 sources so far
- ~30% never seen by any other instrument!
- ~50% have E>100 TeV
- New class of >25 TeV-only sources, weird bc of γ-γ opacity, you'd expect more at low energy!
- Milky Way is full of (non-ID'd) PeVatrons!

(LHAASO Collaboration; Cao++23)

WCDA (1 TeV < E < 25 TeV) Significance Map

Milky Way is full of (non-ID'd) PeVatrons!

(LHAASO Collaboration; Cao++23)

Does the older "cartoon" picture fit w/current theory?

Inner disk

GRMHD simulation with H-AMR: Chatterjee, Liska, Tchekhovskoy & SM 2019; Liska, Chatterjee++2022

Jet

★ Geometry ⇔ particle acceleration The (evolving) perspective from EHT Variability (EHT and beyond) Advances in numerical modelling **Outlook for the future**

Outline

Geometry \Leftrightarrow particle acceleration The (evolving) perspective from EHT Variability (EHT and beyond) Advances in numerical modelling A Outlook for the future

Outline

MWL modeling + VLBI IIII localised dissipation zone far from BH

MWL modeling + VLBI IIII localised dissipation zone far from BH

Marscher++2008, 2014; Cohen++ 2014 (MOJAVE/VLBI; Lister++2019):

Distance to Recollimation Shock

Name	z	Class	pc/mas	theta	Dist to Shock	log M _{BH}	log R
BL Lac	0.0686	BLL	1.29	6	0.26	8.2	5.6
M87	0.00436	FRI	80.0	13	860	9.5	6.0
3C 120 S1	0.033	FR I	0.65	16	0.7	7.8	5.7
3C 120 C80					80		7.8
3C 273	0.158	FSRQ	2.70	6	0.15	9.8	4.1
3C 390.3 S1	0.0561	FR II	1.09	50	0.28	8.6	4.3

The field's "workhorse": time-dependent single-zone models

(from Rodrigues++2024 using AM³: Gao++2017 me modelled 324 gamma-ray emitting blazars; see also the hadronic code comparison Cerutti++2024)

The field's "workhorse": time-dependent single-zone models

(from Rodrigues++2024 using AM³: Gao++2017
→ modelled 324 gamma-ray emitting blazars; see also the hadronic code comparison Cerutti++2024)

XRB spectral-timing: XTE J1836-194 "dissipation zone" responds to disk in realtime

Cao, Lucchini, SM++2021)

XRB spectral-timing: XTE J1836-194 "dissipation zone" responds to disk in realtime

Cao, Lucchini, SM++2021)

NGC 1068: AGN Corona (=jet base?) + Starburst?

Eichmann, Oikonomou, Salvatore++2022

NGC 1068: AGN Corona (=jet base?) + Starburst?

Swap spatial with time resolution: X-ray spectral reflection & lags

See eg. Fabian++2009; Zoghbi++2010; Uttley++2014 for reviews

NGC1068: complex absorption/reflection constrains geometry

Duncan (MSc student), Lucchini, SM++, in prep.; see also Bauer++2015

NICER: Reverberation mapping "machine"

And see recent work by: Lucchini, Russell, SM++ 2021; Cao, Lucchini, SM++ 2021

Wang, Kara++2022

Kara+19 nature **EVOLUTION OF A BLACK HOLE**

Polarisation is a key new constraint with IXPE, but beware resolution!

Krawczynski++2022: Cyg X-1 constraints from IXPE

Goddi, EHT++2021 (ALMA subarray of the EHT array 2017)

Radiative 2T-3D-GRMHD simulations: corona as disk/jet interface layer?

Disk threaded by large scale poloidal flux promotes 2T regions and truncation

Develop low density, thick hot corona with $T_i > T_e$.

Liska, Musoke, Tchekhovskoy++2022; Liska++2024

Corona best described by radiative analog of a MAD

Corona flow has patches of cool gas floating through it.

★ Geometry ⇔ particle acceleration The (evolving) perspective from EHT Variability (EHT and beyond) Advances in numerical modelling A Outlook for the future

Outline

Model degeneracy introduced via particle "subgrid" models

GRMHD simulation: disk (orange), jets (blue)

Single particle fluid **protons**

Visualisations by DooSoo Yoon w/H-AMR & GRRT/BHOSS (Younsi++2016; 2020) and see EHT Collaboration 2019 Papers I-VI

Assume 100% H ($n_e = n_p$), thermal distributions

Heat electrons, example: from EHT/ Moscibrodzka++2016 (motivated by Alfvénic turbulent heating, eg. Howes 2010; Kawazura++2018)

$$T_p/T_e = \frac{R_{\rm low} + R_{\rm high}\beta^2}{1 + \beta^2}$$

Where $\beta = P_{gas}/P_{mag}$

Model degeneracy introduced via particle "subgrid" models

Visualisations by DooSoo Yoon w/H-AMR & GRRT/BHOSS (Younsi++2016; 2020) and see EHT Collaboration 2019 Papers I-VI

Model degeneracy introduced via particle "subgrid" models

GRMHD :

Visualisations by DooSoo Yoon w/H-AMR & GRRT/BHOSS (Younsi++2016; 2020) and see EHT Collaboration 2019 Papers I-VI

O 0 6 \mathbf{O} \bigcirc \mathbf{O} 0 \bigcirc \bigcirc O $\langle \mathbf{O} \rangle$ $\langle \bigcirc \rangle$ \bigcirc \bigcirc 6 $\overline{
 }$ $(\mathbf{6})$ (Paper V; EHT Collaboration 2019. Slide credit: A. Broderick)

EHT's M87* Simulation Library: ~10x5 models, 23 TB, 60k snapshot images

- Matching just the size/shape and minimum jet power (from MWL), could only rule out ~60% of models
- Polarisation (EHTC 2021) prefers "MAD": dynamically strong, ordered, poloidal B fields is ideal for launching jets!
- Cannot yet connect the EHT image of M87* to its jets, unambiguously determine spin, or constrain particle acceleration regions/ mechanisms!

(Paper V; EHT Collaboration 2019. Slide credit: A. Broderick)

(
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (00 6 6 Ô O **Event Horizon Telescope**

EHT's M87* Simulation Library: ~10x5 models, 23 TB, 60k snapshot images

Matching just the size/shape and minimum

(Paper V; EHT Collaboration 2019. Slide credit: A. Broderick)

Event Horizon Telescope

Models need to explain not only images but also MWL spectra

(EHT Multiwavelength Science WG, EHTC, Fermi-LAT, HESS, MAGIC, VERITAS, EAVN++ 2021, ApJL)

Models need to explain not only images but also MWL spectra

(EHT Multiwavelength Science WG, EHTC, Fermi-LAT, HESS, MAGIC, VERITAS, EAVN++ 2021, ApJL)

The new horizon: combined image + SED modelling

Thermal, inner 30r_q

Non-thermal parameterised power-law, <960r_q

(Work in progress by UvA PhD students Wanga Mulaudzi & Rittick Roy)

★ Geometry ⇔ particle acceleration The (evolving) perspective from EHT Xariability (EHT and beyond) Advances in numerical modelling **A Outlook for the future**

Outline

We now know that the M87* ring is evolving! **M87***:

(4/2018)

M87*: (4/2017)

EHTC M87* 2017 paper I (2019); M87* 2018 paper I (2024)

See Giacomo Principe's talk on the 2018 EHT campaign for M87!

We now know that the M87* ring is evolving! M87*: (4/2018)

M87*: (4/2017)

EHTC M87* 2017 paper I (2019); M87* 2018 paper I (2024)

See Giacomo Principe's talk on the 2018 EHT campaign for M87!

We now know that the M87* ring is evolving!

Sgr A* gives us a direct view of coronal-like activity

X-ray flare from NASA's Chandra X-ray Observatory, + NuSTAR & Swift (space)

Infrared flare from the Keck Observatory + VLT/GRAVITY (ground)

10:38:57.11 UT

T. Do, Keck/UCLA Galactic Center Group

We applied a much greater set of constraints (11!) to Sgr A*

EHTC Sgr A* Papers I-VI (2022)

"Variability Crisis"??

EHTC Sgr A* Paper I & Paper V (2022), Paper VII & VIII (2024)

Variability one of the biggest modelling challenges

EHTC Sgr A* Paper V (2022); Salas, Chatterjee, Musoke, SM, Liska++, in prep.

Variability predictions to test e.g. magnetic reconnection models

- Based on simulations by Christie++2019 and Petropoulou++2016
- Varying 3 parameters to generate simulated light curves, compare w/data:
 - B-field strength
 - Jet viewing angle
 - Reconnection layer angle
- Optimised fits vs multiple constraints: flux distribution, fractional variability, fastest $\Delta \tau$ / rise T

Jormanainen++2023

20

0

50

100

Time [h]

B = 0.1 G, $\theta_{obs} = 0^{\circ}$

 $\theta' = 0^{\circ}$

400

 $\theta' = 40^{\circ}$

300

150

 $\theta' = 90^{\circ}$

200

Variability predictions to test e.g. magnetic reconnection model

0

- Based on simulations by Christie++20 Petropoulou++2016
- Varying 3 parameters to generate simulation light curves, compare w/data:
 - B-field strength
 - Jet viewing angle
 - Reconnection layer angle
- Optimised fits vs multiple constraints: flux distribution, fractional variability, fastest $\Delta \tau$ / rise T

Jormanainen++2023

★ Geometry ⇔ particle acceleration The (evolving) perspective from EHT Variability (EHT and beyond) Advances in numerical modelling **Autlook for the future**

Outline

The newest generation high-res simulations will be put to the test

Ripperda, Bacchini & Philippov 2020, resistive 2D GRMHD w/ effective resolution of 12288x6144

(5400x2300x2300) with H-AMR (Liska++ 2019) yields similar results: Ripperda, Liska, Chatterjee, Musoke, Philippov, SM++ 2022

IC = soft background + e^{\pm} SSC = synchrotron + e^{\pm}

Very high resolution 3D GRMHD gives insights into flares/dissipation

Ripperda, Liska, Chatterjee, Musoke, Philippov, SM 2022

Can drive turbulence/instabilities leading to particle acceleration # flares?

see e.g., Porth++2021; Ripperda++2024

Interface region seems to be what shines for jets/corona

M87 (VLBA/VLBI): Kim++2018; Walker+ +2018; Hada++14,16,18 3C84 (VLBI+RadioAstron): Giovannini++2018, Nat.Astro

Cen A (EHT): Janssen++2021, Nat.Astro

_ _/

Bridging the gap between particle and dynamical flows

Two recent examples: (left) Sironi++2021, (right) Meringolo++2023; for new results with PIC+turbulence/comptonisation see Grošelj++2024

Geometry \Leftrightarrow particle acceleration The (evolving) perspective from EHT Variability (EHT and beyond) Advances in numerical modelling **Outlook for the future**

Outline

Wood++2021, see also Espinasse++2020; Tremou++2022; and Carotenuto++2021 for extreme deceleration in MAXI J1348

0

Next-gen EHT expansions in the planning/design phase on CTA timescale

see Johnson++2023: "Key Science Goa

JELM **OVRO O**SMT SPM KP LMT

KVN-YS

Future: ngEHT dynamical imaging + MWL/MM monitoring!

Reconstructed ngEHT movie: L. Blackburn (SAO), site model: A. Raymond, jet simulation w/nonthermal reconnection heating model: Chael++2019

Future: ngEHT dynamical imaging + MWL/MM monitoring!

Reconstructed ngEHT movie: L. Blackburn (SAO), site model: A. Raymond, jet simulation w/nonthermal reconnection heating model: Chael++2019

-3.0

Future: ngEHT dynamical imaging + MWL/MM monitoring!

- ***** State-of-the-art data continue to support the paradigm that AGN and XRBs share similar central engine physics/geometry
- ***** XRB timing, MWL correlations and EHT imaging all point towards a complex, magnetised, dynamical corona connected to the jets
- ***** The challenge now is to incorporate/interpret the 'single-zone' picture within this complex phenomenology
- **×** Future: combining EHT/imaging with MWL/MM monitoring will resolve the links between global dynamics and particle acceleration
- **★** Extending these studies w/CTA to populations of black holes, lays a path towards the first predictive models of black hole behaviour

Summary

Extra s ides

Variability encodes dynamics and particle acceleration properties

2017 campaign shows clear change in mm-radio variability after an X-ray flare (lucky!!):

EHTC + Multiwavelength Partners, Sgr A* Paper II 2022; Wielgus, EHT++2022

The "power problem" of lepto-hadronic models

(from Rodrigues++2024; using AM³: Gao++2017 me modelled 324 gamma-ray emitting blazars)

Mass loading can mitigate the hadronic power "crisis"

Kantzas, SM, Lucchini++2023a using simulations from Chatterjee, Liska, Tchekhovskoy & SM 2019; see also, e.g. Petropoulou++2023

Full jet model + joint fitting: blazar PKS 2155-304, R_{diss} < R_{Bondi}?

Lucchini, SM, Crumley, Krauss & Connors 2018; data from Krauss++2006

.0		10	T	Freque	ency (E	II)		10
$f_{ m b}$	$f_{ m sc}$ 10^{-6}	$\sigma_{ m diss}$	В	n(e)	$\gamma_{\rm min}$	$\gamma_{\rm brk}$	$\gamma_{\rm max}$	χ^2/dof
	10	10^{-2}	[G]	[cm ⁻³]	,	10^{2}	10^{5}	
40	2.7	10^{-2} 2.0	[G] 0.24	[cm ⁻³] 52.6	133	10 ²	10 ⁵ 3.2	59.33/22
40 22	2.7	10^{-2} 2.0 3.2	[G] 0.24 0.30	[cm ⁻³] 52.6 17.3	133 63	10 ² 11 7.1	10 ⁵ 3.2 2.7	59.33/22 38.51/15
40 22 30	2.7 2.5 2.0	10^{-2} 2.0 3.2 5.6	[G] 0.24 0.30 0.37	[cm ⁻³] 52.6 17.3 56.6	133 63 72	10 ² 11 7.1 7.1	10 ⁵ 3.2 2.7 2.4	59.33/22 38.51/15 58.3/21
40 22 30 86	2.7 2.5 2.0 1.2	10^{-2} 2.0 3.2 5.6 2.0	[G] 0.24 0.30 0.37 0.23	[cm ⁻³] 52.6 17.3 56.6 97.3	133 63 72 51	10 ² 11 7.1 7.3	10 ⁵ 3.2 2.7 2.4 1.8	59.33/22 38.51/15 58.3/21 66.05/24
40 22 30 86 50	2.7 2.5 2.0 1.2 1.2	10^{-2} 2.0 3.2 5.6 2.0 1.4	[G] 0.24 0.30 0.37 0.23 0.23	[cm ⁻³] 52.6 17.3 56.6 97.3 130	133 63 72 51 43	10 ² 11 7.1 7.3 8.2	10 ⁵ 3.2 2.7 2.4 1.8 1.8	59.33/22 38.51/15 58.3/21 66.05/24 29.87/24

Geometrical trends in XTE J1752-223, MAXI J1659-152, and XTE J1650-500

'Corona' expands as inner disk cools? Corona contracts along jet and/or is more beamed nearing state transition **supports** corona-only = failed jet?

Lucchini, Russell, SM++ 2021; Cao, Lucchini, SM++ 2021

•	

Tilted black holes may explain a variety of observed phenomena

Precessing jets and low frequency QPOs

Kalamkar++2016:

Ingram & Motta 2019

Radiation GRMHD: low & high frequency QPOs

r = 13 r_g (disk tearing radius)

Mishra++2017; Musoke, Liska, Porth++, submitted

-6.000-6.758-7.515-8.273-9.030-9.788-10.545-11.303-12.061-12.818

OJ 287: Is it really a binary black hole??

But other options do exist!

- Kink instabilities? (Y.Mizuno+ +2014; Singh, YM++2015, Kadowaki, YM++2020)
- Tilted accretion disk (Liska, Hesp, Tchekhovskoy, Ingram, vd Klis & SM 2018; Liska, Chatterjee++2019, 2022)

(Slide adapted from J.L. Gomez)

GRMHD simulations of a SMBBH system

The new horizon: combined image + SED modelling

Radio to optical SED fitting + image modelling by Fromm++22