Astrophysical interpretation of the UHECR data measured by the Pierre Auger Observatory and tests of Lorentz symmetry

Camilla Petrucci* on behalf of the Pierre Auger Collaboration *Università degli Studi dell'Aquila and INFN-LNGS CTAO Symposium, 15-18 April 2024

Lorentz Invariance Violation

The need to study a possible violation of Lorentz invariance arises from the desire to unify **quantum mechanics** and **general relativity**

General Relativity is a classical theory, but quantum effects are not negligible when energy is of the order of the **Planck scale**

Possible **signatures** of Lorentz Invariance violation could be observed considering **physical phenomena** at the highest energies

CAMILLA PETRUCCI – CTAO SYMPOSIUM 04/15/2024

2

The Pierre Auger Observatory

CAMILLA PETRUCCI – CTAO SYMPOSIUM 04/15/2024

The Pierre Auger Observatory has been designed to investigate the highest energy cosmic rays with energy exceeding 10¹⁹ eV, combining a surface array of particle detectors with fluorescence telescopes for

hybrid detection

Telescope Array (TA) Delta, UT, USA 507 detector stations, 680 km² 36 fluorescence telescopes

Pierre Auger Observatory Province Mendoza, Argentina 1660 detector stations, 3000 km² 27 fluorescence telescopes

• The SDs measure photons and charged particles at ground level • The FDs observe longitudinal development of air showers in the atmosphere

• The RDs complement this setup studying radio emission from air showers

3

How to break Lorentz Invariance

Lorentz Invariance Violation effects and signatures can be observed changing the kinematics and energy threshold of interactions

Modified dispersion relation

LIV is often associated with quantum gravity theories \rightarrow expansion in terms of the Planck scale

Assumption: only the lowest-order non-vanishing term has a non-negligible effect

CAMILLA PETRUCCI – CTAO SYMPOSIUM 04/15/2024

The Pierre Auger Collaboration, "Testing effects of Lorentz invariance violation in the propagation of astroparticles with the Pierre Auger Observatory", JCAP 2022

$$E_i^2 - p_i^2 = m_i^2 + \sum_{n=0}^N \delta_{i,n} E_i^{2+n}$$

- *n* is the order of the perturbation
- $\delta_{i,n}$ define the energy scale associated with the violation

$$n_{n} = \frac{\eta_{i,n}}{M_{\rm Pl}^n}$$

Individual limits on δ_{in}

LIV searches in the Observatory

The **extragalactic propagation** of UHECRs as well as the **development of the cascade in the atmosphere** can be modified by violation of Lorentz invariance

Extragalactic propagation

- Electromagnetic sector:
 - Suppression of UHE photon absorption by photons of the background
- Hadronic sector:
 - Suppression of the nuclear disintegration
 - Suppression of the pion production

CAMILLA PETRUCCI – CTAO SYMPOSIUM 04/15/2024

Extensive Air Showers

- Electromagnetic sector:
 - Modification of the BH cross sections
- Hadronic sector:
 - Suppression of pion decay

• •

LIV searches in the Observatory

The **extragalactic propagation** of UHECRs as well as the **development of the cascade in the atmosphere** can be modified by violation of Lorentz invariance

Extragalactic propagation

- Electromagnetic sector:
 - Suppression of UHE photon absorption by photons of the background
- Hadronic sector:
 - Suppression of the nuclear disintegration
 - Suppression of the pion production

CAMILLA PETRUCCI – CTAO SYMPOSIUM 04/15/2024

- Electromagnetic sector:
 - Modification of the BH cross sections
- Hadronic sector:
 - Suppression of pion decay

•••

Combined spectrum and composition fit

CRs ejected by EG accelerators

Assumptions on a simple astrophysical model:

- Identical sources, uniformly distributed in co-moving volume
- Power-law spectra at escape, up to max energy, rigidity dependence assumption

intergalactic medium

Choice of propagation and hadronic interaction models for uncertain quantities:

- Extragalactic background light
- Photo-disintegration cross sections
- Hadronic interaction model

$$\frac{\mathrm{d}N_A}{\mathrm{d}E} = J_A(E) = f_A J_0 \left(\frac{E}{10^{18} \text{ eV}}\right)^{-\gamma} \times f_{\mathrm{cut}}(E, E)$$

CAMILLA PETRUCCI – CTAO SYMPOSIUM 04/15/2024

Estimation of free parameters

Characterization of the fluxes at the sources (energy spectrum and mass composition)

 $Z_A R_{\rm cut}$)

UHECRs Propagation

- For the energies of the UHECRs, relevant photon fields • Processes due to the UHECRs interactions with are: astrophysical background photons: • Cosmic Microwave Background (CMB) • Pair production: $\varepsilon' > 1 \,\mathrm{MeV}$ • UV-optical-IR (Extragalactic Background Light, EBL) $p + \gamma \rightarrow p + e^+ + e^ 10^{3}$ Pion production $\int p + \gamma \rightarrow n + \pi^{+} \\ \pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \\ \mu^{+} \rightarrow e^{+} + \nu_{e} + \bar{\nu}_{\mu}$ Microwaves 10 source of Intensity nW m⁻² sr⁻¹ Optical cosmogenic neutrinos UV X-ray Infrared $\begin{cases} p + \gamma \to p + \pi^0 \\ \pi^0 \to \gamma + \gamma \end{cases}$ source of Gamma-ray cosmogenic Radio 10^{-3} photons • **Disintegration of nuclei:** $\varepsilon' > 8 \text{ MeV}$ $A + \gamma \rightarrow (A - n) + nN$

UHECRs undergo energy losses during their propagation caused by both of the expansion of the Universe and the interactions with the background radiation fields

UHECRs Propagation

- For the energies of the UHECRs, relevant photon fields • Processes due to the UHECRs interactions with are: astrophysical background photons: • Cosmic Microwave Background (CMB) • Pair production: $\varepsilon' > 1 \,\mathrm{MeV}$ • UV-optical-IR (Extragalactic Background Light, EBL) $p + \gamma \rightarrow p + e^+ + e^ 10^{3}$ **Pion production:** $\varepsilon' > 150 \,\text{MeV}$ Microwaves $p + \gamma \rightarrow n + \pi^+$ 10 source of Intensity nW m⁻² sr⁻¹ Optical $\pi^+ \to \mu^+ + \nu_\mu$ cosmogenic $\mu^+ \to e^+ + \nu_e + \bar{\nu}_\mu$ neutrinos UV X-ray Infrared $\int p + \gamma \rightarrow p + \pi^0$ source of Gamma-ray $\pi^0 \rightarrow \gamma + \gamma$ cosmogenic Radio 10 photons **Disintegration of nuclei:** $\varepsilon' > 8 \text{ MeV}$ $A + \gamma \rightarrow (A - n) + nN$ Wavelength (meters)

UHECRs undergo energy losses during their propagation caused by both of the expansion of the Universe and the interactions with the background radiation fields

Electromagnetic sector: photon propagation

Expected effects on photon propagation:

- LIV can inhibit pair production at the highest energies
- More photons could reach the Earth

- Photons produced from pion decay, propagating In the extragalactic space under LIV assumptions
- Modifications in pair-production cross section \rightarrow increase of the mean free path \rightarrow less interactions \rightarrow more photons expected R. G. Lang, H. Martínez-Huerta, and V. de Souza, "Limits on the Lorentz Invariance Violation from UHECR

Electromagnetic sector: photon propagation

Comparing the predicted LIV flux arriving at earth with the upper limits on the photons flux measured by the Pierre Auger Observatory

CAMILLA PETRUCCI – CTAO SYMPOSIUM 04/15/2024

- **composition** at escape from sources) propagating in extragalactic
- **Photons** produced in extragalactic propagation by UHECRs with

UHECRs Propagation

- For the energies of the UHECRs, relevant photon fields • Processes due to the UHECRs interactions with are: astrophysical background photons:
 - Cosmic Microwave Background (CMB)
 - UV-optical-IR (Extragalactic Background Light, EBL)

UHECRs undergo energy losses during their propagation caused by both of the expansion of the Universe and the interactions with the background radiation fields

How LIV affects the interaction during propagation?

- Above critical energy, number of interactions during propagation is reduced \rightarrow the UHECRs interact less
- The cosmic ray can travel farther than LI scenario

The LIV-modified attenuation length for pion production and the LIV- modified energy threshold for photo disintegration were implemented in SimProp

CAMILLA PETRUCCI – CTAO SYMPOSIUM 04/15/2024

Effects on propagation:

• Interactions of nuclei \rightarrow modified photo-disintegration

• Consider a nucleus as composed by A nucleons

• LI case: the photo-disintegration threshold depends only on the nuclear species

• LIV case: a dependence of the photo-disintegration threshold on the energy appears

13

Expected CR spectrum and mass composition

ORDER OF LIV n=0,1, 2 δ>0 **Superluminal LIV**

• For each UHECR scenario the free parameters of the fit are:

The nuclei fractions, the index of the energy spectrum, the maximum rigidity, the normalization factor of the flux, the LIV parameter δ

• A log-likelihood fit gives the combination of the parameters that best describes data

Effect on CR propagation:

reproduce the observed composition

CAMILLA PETRUCCI – CTAO SYMPOSIUM 04/15/2024

Fitting the data measured by the Pierre Auger Observatory with the expected spectrum and composition at ground for both LIV and LI scenarios (combined fit)

• Threshold energy increases \rightarrow less interactions \rightarrow if LIV, lighter nuclear species are needed at the sources in order to

- LIV can be tested with **UHECRs**
- **Extragalactic propagation** of UHECRs
 - Searches signatures in **electromagnetic sector**
 - \rightarrow strong constraints on the LIV coefficients
 - Searches signatures in hadronic sector
- Constraints of LIV coefficients depend on the composition of the cosmic rays at the source → **AugerPrime** will improve the knowledge on the composition of the cosmic rays at Earth \rightarrow LIV searches will profit
- Development of cascade of particles in atmosphere
 - Fluctuations of number of muons used for the first time to constrain LIV

CAMILLA PETRUCCI – CTAO SYMPOSIUM 04/15/2024

Camilla Petrucci for the Pierre Auger Collaboration

Thank you for the attention!

CTAO Symposium, 15-18 April 2024

Main References

- The Pierre Auger Collaboration, **"Testing effects of Lorentz invariance violation in the propagation of astroparticles with the Pierre Auger Observatory**", <u>JCAP 2022</u>
 - D. Boncioli *et al,* "Future prospects of testing Lorentz invariance with UHECRs", <u>ICRC2015</u>
 - D. Boncioli for the Pierre Auger Collaboration, "Probing Lorentz symmetry with the Pierre Auger Observatory", <u>ICRC 2017</u>
 - R. G. Lang for the Pierre Auger Collaboration, "**Testing Lorentz Invariance Violation at the Pierre Auger Observatory**", <u>ICRC2019</u>
- C. Trimarelli for the Pierre Auger Collaboration, "Constraining Lorentz Invariance Violation using the muon content of extensive air showers measured at the Pierre Auger Observatory", <u>ICRC2021</u>
- S. Coleman and S. L. Glashow, "High-energy tests of Lorentz invariance", Phys. Rev. D, 59:116008, Apr 1999
- S. Coleman and S. L. Glashow, "**Cosmic ray and neutrino tests of special relativity**", Physics Letters B, 405(3):249–252, 1997
- R. G. Lang, H. Martínez-Huerta, and V. de Souza, "Limits on the Lorentz Invariance Violation from UHECR astrophysics. Astrophys", J., 853(1):23, 2018

CAMILLA PETRUCCI – CTAO SYMPOSIUM 04/15/2024

