

#### Status of gamma-ray astronomy Stefan Funk - ECAP (Erlangen Centre for Astroparticle Physics)





Friedrich-Alexander-Universität Erlangen-Nürnberg





#### **Extreme astrophysical** conditions



#### **Binaries**



#### **Starburst Galaxies**



#### The frontiers of physics







#### **DETECTION OF GAMMA RAYS**













# Fermi-LAT

#### FERMI-LAT MAPPING THE SKY AT GEV ENERGIES

Close to 87,000 orbits since launch 98.8% uptime Close to 1 Trillion triggers on the LAT 1.7 billion LAT photons available at FSSC



WITH FERMI GAMMA-RAY SPACE TELESCOPE.

OUR

YEARS

www.nd5d.g0



## THE MULTI-MESSENGER EVENT GRB170817A, GW170817



Friedrich-Alexander-Universitate Erlangen-Nürnberg





- $\blacktriangleright$  1-in-10000 year event
- Detected by Fermi
  GBM
- Severe saturation in
  GBM and LAT in main
  phase (Region IV)
- Detected by LHAASO and HAWC (IACTs: full moon)











## THE BOAT (BRIGHTEST OF

- $\blacktriangleright$  1-in-10000 year event
- Detected by Fermi GBM
- Severe saturation in
  GBM and LAT in main
  phase (Region IV)
- Detected by LHAASO and HAWC (IACTs: full moon)





#### Lesage et al. 2023 (GBM + LAT)

7

- $\blacktriangleright$  1-in-10000 year event
- Detected by Fermi
  GBM
- Severe saturation in
  GBM and LAT in main
  phase (Region IV)
- Detected by LHAASO and HAWC (IACTs: full moon)











Friedrich-Alexander-Universität Erlangen-Nürnberg

#### https://www.science.org/doi/10.1126/sciadv.adj2778









Friedrich-A Erlangen-N







Friedrich-Alexander-Universität Erlangen-Nürnberg









Erlangen-Nürnberg

8











Friedrich-Alexander-Universität Erlangen-Nürnberg

























> Detection of the Galactic Plane in neutrinos – at 4.5 $\sigma$  in 10 years of IceCube data.

► No significant associations with known VHE gamma-ray sources (yet)

lexander-Universität Erlangen-Nürnberg

#### IceCube Collaboration Science 380 (2023) 1338-1343











Detection of the Galactic Plane in neutrinos – at  $4.5\sigma$  in 10 years of IceCube data.

► No significant associations with known VHE gamma-ray sources (yet)

lexander-Universität Erlangen-Nürnberg

#### IceCube Collaboration Science 380 (2023) 1338-1343







# Multi-instrument synergies on the ground



#### LHAASO SKY AT >25 TEV ENERGIES

Cao et al., arXiv: 2305.17030v1

#### ► 75 sources > 25 TeV

- ► 43 sources > 100 TeV
- Connection to high-energy pulsars



12

#### LHAASO PROPERTIES



Daily Duty Cycle [ % ]





KM2A

WCDA



#### **LHAASO PROPERTIES**





Friedrich-Alexander-Universitä Erlangen-Nürnberg

Instant FOV





#### LHAASO PROPERTIES











## WHAT DOES THAT TELL US?

- Pulsar Wind Nebulae
  - Likely leptonic (IC > 100 TeV in radiation dominated environments possible (Breuhaus et al. 2021)
  - Acceleration to the maximum potential drop (de Oña Wilhelmi et al. 2022)
  - Hadronic component possible at the few % level (LHAASO)



#### de Oña Wilhelmi et al. 2022



0.1 Pulsar efficiency ( $\eta_{\rm b}$ )

0.1

10

[PeV]

Р





## WHAT DOES THAT TELL US?

► CRs at the knee likely a mix

- H.E.S.S./LHAASO: several source classes
- DAMPE/CALET spectrum not featureless
- e.g. SNRs below the knee
  and then Stellar cluster with
  collective winds beyond the
  knee



÷











discontinuity particle acceleration site

manatee nebula supernova remnant























Pre-trial significance,  $\sigma$ 

Erland





## **MEASURING THE EXTRAGALACTIC BACKGROUND LIGHT**

> Optical depth as a function of redshift up to z=3 is sensitive to Hubble constant











## **MEASURING THE EXTRAGALACTIC BACKGROUND LIGHT**

> Optical depth as a function of redshift up to z=3 is sensitive to Hubble constant











## **MEASURING THE EXTRAGALACTIC BACKGROUND LIGHT**

> Optical depth as a function of redshift up to z=3 is sensitive to Hubble constant







8

to Hubble constant











(Preliminary)





ecap







Santa Cr de la Sie

La az Chacaltaya (Bolivia) Bolivia Cochabambao

Alto Tocomar (Argentina...

Peru 4.9 k













# Technical developments



Getty images

## **GAMMA-HADRON SEPARATION AND RECONSTRUCTION USING DNNS**

 For gamma-ray astronomy with varying telescope/station participation graph neural networks (GNNs) particular appropriate







#### e.g. Glombitza et al. 2024

Friedrich-Alexander-Universität Erlangen-Nürnberg







## **GAMMA-HADRON SEPARATION AND RECONSTRUCTION USING DNNS**

For gamma-ray astronomy with varying telescope/station participation graph neural networks (GNNs) particular appropriate







## HYBRID MACHINE LEARNING-LIKELIHOOD EVENT RECONSTRUCTION

Improve per-pixel likelihood using machine learning (Schwefer et al. 2024)











## HYBRID MACHINE LEARNING-LIKELIHOOD EVENT RECONSTRUCTION

Improve per-pixel likelihood using machine learning (Schwefer et al. 2024)



Friedrich-Alexander-Universität Erlangen-Nürnberg

![](_page_42_Picture_4.jpeg)

![](_page_42_Picture_5.jpeg)

![](_page_42_Picture_6.jpeg)

## **ANALYSIS OF COMPLEX AND LARGE-SCALE EMISSION REGIONS**

![](_page_43_Figure_1.jpeg)

![](_page_43_Picture_2.jpeg)

![](_page_43_Picture_4.jpeg)

## MULTI-INSTRUMENT 3D MODEL-FITTING AT THE EVENT LEVEL WITH GAMMAPY

![](_page_44_Figure_1.jpeg)

![](_page_44_Picture_2.jpeg)

https://arxiv.org/pdf/2403.12608.pdf

![](_page_44_Picture_5.jpeg)

![](_page_44_Picture_6.jpeg)

### MULTI-INSTRUMENT 3D MODEL-FITTING AT THE EVENT LEVEL WITH GAMMAPY

![](_page_45_Picture_1.jpeg)

![](_page_45_Picture_2.jpeg)

![](_page_45_Picture_3.jpeg)

![](_page_45_Picture_4.jpeg)

![](_page_46_Picture_1.jpeg)

![](_page_46_Picture_2.jpeg)

![](_page_46_Picture_3.jpeg)

![](_page_46_Picture_4.jpeg)

![](_page_46_Picture_5.jpeg)

![](_page_47_Picture_1.jpeg)

Friedrich-Alexander-Universität Erlangen-Nürnberg

![](_page_47_Picture_3.jpeg)

![](_page_47_Picture_4.jpeg)

![](_page_47_Picture_5.jpeg)

![](_page_47_Picture_6.jpeg)

![](_page_48_Figure_1.jpeg)

![](_page_49_Figure_1.jpeg)

#### CTA IS COMING: CAMERA FOR MSTS (FLASHCAM) IN OPERATION SINCE OCTOBER 2019

![](_page_50_Picture_1.jpeg)

![](_page_50_Picture_2.jpeg)

![](_page_50_Picture_3.jpeg)

![](_page_50_Picture_4.jpeg)

![](_page_50_Picture_5.jpeg)

### CTA IS COMING: SST-LIKE DESIGN IN ASTRI MINI ARRAY IN TENERIFE

![](_page_51_Picture_1.jpeg)

Friedrich-Alexander-Universit Erlangen-Nürnberg

![](_page_51_Picture_3.jpeg)

![](_page_51_Picture_4.jpeg)

![](_page_51_Picture_5.jpeg)

### CTA IS COMING: SST-LIKE DESIGN IN ASTRI MINI ARRAY IN TENERIFE

![](_page_52_Picture_1.jpeg)

![](_page_52_Picture_2.jpeg)

![](_page_52_Picture_3.jpeg)

#### CTA IS COMING: THE LST1!

![](_page_53_Picture_1.jpeg)

Friedrich-Alexander-Universität Erlangen-Nürnberg

![](_page_53_Picture_4.jpeg)

![](_page_53_Picture_5.jpeg)

#### CTA IS COMING: THE LST1!

![](_page_54_Picture_1.jpeg)

Friedrich-Alexander-Universität Erlangen-Nürnberg

![](_page_54_Picture_3.jpeg)

![](_page_54_Picture_4.jpeg)

#### LATEST STATUS

#### Access road with crash barriers

## **Pre-Construction**

Friedrich-Alexander-Universität Erlangen-Nürnberg

Current Phase

![](_page_55_Figure_6.jpeg)

#### **Pre-Production** 2022-2023

Production 2023-2027

![](_page_55_Picture_9.jpeg)

#### LATEST STATUS

#### Access road with crash barriers

![](_page_56_Picture_2.jpeg)

FAU Friedrich-Alexander-Universität Erlangen-Nürnberg

![](_page_56_Figure_5.jpeg)

**Pre-Production** 2022-2023

Production 2023-2027

![](_page_56_Picture_8.jpeg)

# messenger astrophysics. technical developments. Theme 4: CTA is coming!

In recent years, a large network of observatories has been deployed on remote places in the land, in the sea underground and in space, to detect the signals coming from the "visible" Universe and even earlier, in

![](_page_57_Picture_2.jpeg)

- Theme 1: A gamma-ray all-sky detector is essential for multi-
- Theme 2: Strong synergies between gamma-ray telescopes Theme 3: Current instruments serve as crucial testbeds for

![](_page_57_Picture_5.jpeg)

### DARK MATTER: WIMPS ARE NOT DEAD

- ► WIMP window at 100-10000 GeV.
- See e.g. paper <u>https://arxiv.org/pdf/</u> <u>1805.10305.pdf</u>
  - Neutrinos not included!
  - Neutrinos least constraining at the moment but likely decisive in testing WIMP hypothesis

![](_page_58_Picture_5.jpeg)

![](_page_58_Figure_6.jpeg)

![](_page_58_Picture_7.jpeg)

![](_page_58_Picture_8.jpeg)

![](_page_58_Picture_9.jpeg)

![](_page_58_Picture_10.jpeg)

![](_page_59_Figure_1.jpeg)

![](_page_59_Picture_2.jpeg)

![](_page_59_Picture_4.jpeg)

![](_page_59_Picture_5.jpeg)

![](_page_59_Picture_6.jpeg)