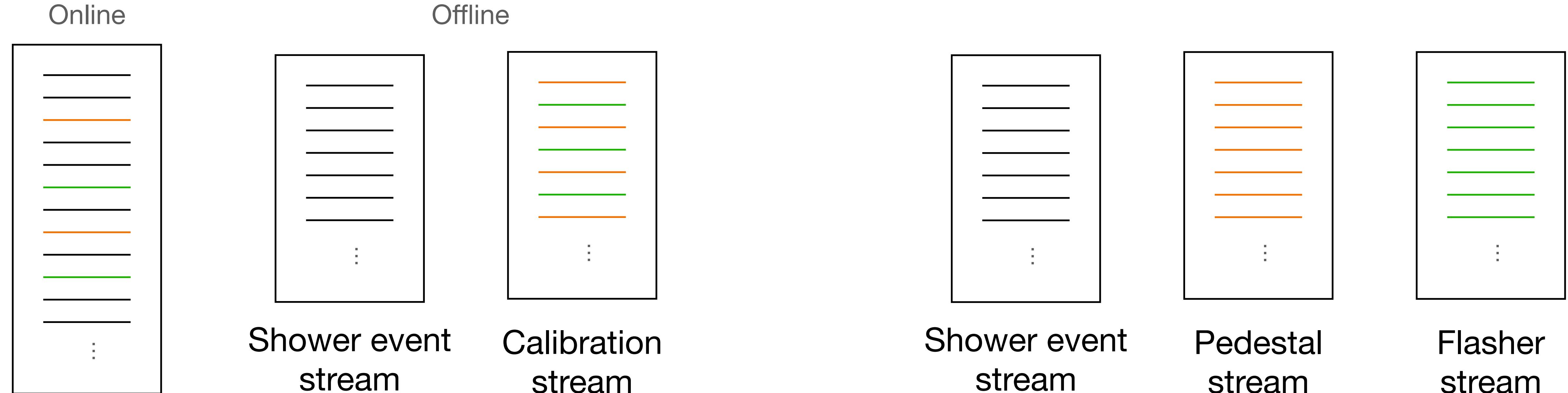


UNIVERSITÉ
DE GENÈVE

FACULTÉ DES SCIENCES

cherenkov
telescope
array

Towards the Camera Calibration Data Model - Proposals


Tjark Miener (tjark.miener@unige.ch) on behalf of the CalibPipe team

Outline

- Data streams
- Data Model Proposals
 - Proposal A: current `ctapipe/lstchain` data structure
 - Proposal B & C: CTAO *DL0* data structure
- Static vs dynamic data storing
- Timestamps vs event IDs
- Discussion

Data streams

Current (LST-1) data streams → ACADA data streams

Single data stream

Shower events

Pedestal events

Flasher events

- ACADA will provide the DPPS with distinct data streams for the calibration data
- Pedestal and flat-field parameters should be processed independently and stored in their corresponding containers
- Camera calibration coefficients should be then calculated from those internal files and store permanently in a data model to interface the other DPPS pipelines

Current *ctapipe/lstchain* data structure

- Proposal A is designed to match the current *ctapipe/lstchain* data structure
- In place solution that is tested on a daily basis (mainly for the LST-1 prototype in monoscopic mode). Current calibrated *R1*-waveforms do not follow the *DL0* Data Model which will be provided to the DPPS by ACADA.

Proposal A.1: Current *ctapipe/lstchain* data structure (static storing)

Scheme based on timestamps

Table A.1 – Flat-field parameters proposal A.1.

Name	Type	Description
sample_time	float64	Time (in s) associated to the considered sample.
sample_time_min	float64	Minimum time (in s) of the considered sample.
sample_time_max	float64	Maximum time (in s) of the considered sample.
num_samples	uint64	Number of events used for the calculation of flat-field parameters.
signal_charge [num_channels, num_pixels]	Measurement::BasicType	Measurement of the signal charge over the considered sample in all channels and pixels.
signal_time [num_channels, num_pixels]	Measurement::BasicType	Measurement of the signal time over the considered sample in all channels and pixels.
relative_gain [num_channels, num_pixels]	Measurement::BasicType	Measurement of the relative gain over the considered sample in all channels and pixels.
relative_time [num_channels, num_pixels]	Measurement::BasicType	Measurement of the relative time over the considered sample in all channels and pixels.
outliers_charge [num_channels, num_pixels]	Measurement::BasicType	Measurement of the charge outliers the considered sample in all channels and pixels.
outliers_time [num_channels, num_pixels]	Measurement::BasicType	Measurement of the time outliers over the considered sample in all channels and pixels.
failing_pixels [num_channels, num_pixels]	bool	True if the algorithm failed to produce valid flat-field parameters in all channels and pixels.

Proposal A.2: Current *ctapipe/lstchain* data structure (static storing)

Scheme based on event IDs

Table A.2 – Flat-field parameters proposal A.2.

Name	Type	Description
event_start	uint64	ID of the first event in the considered sample.
event_stop	uint64	ID of the last event in the considered sample.
num_samples	uint64	Number of events used for the calculation of flat-field parameters.
signal_charge [num_channels, num_pixels]	Measurement::BasicType	Measurement of the signal charge over the considered sample in all channels and pixels.
signal_time [num_channels, num_pixels]	Measurement::BasicType	Measurement of the signal time over the considered sample in all channels and pixels.
relative_gain [num_channels, num_pixels]	Measurement::BasicType	Measurement of the relative gain over the considered sample in all channels and pixels.
relative_time [num_channels, num_pixels]	Measurement::BasicType	Measurement of the relative time over the considered sample in all channels and pixels.
outliers_charge [num_channels, num_pixels]	Measurement::BasicType	Measurement of the charge outliers the considered sample in all channels and pixels.
outliers_time [num_channels, num_pixels]	Measurement::BasicType	Measurement of the time outliers over the considered sample in all channels and pixels.
failing_pixels [num_channels, num_pixels]	bool	True if the algorithm failed to produce valid flat-field parameters in all channels and pixels.

Proposal A.2: Current *ctapipe/lstchain* data structure (static storing)

Measurement::BasicType			
Scheme based	num_samples	uint64	Number of samples used in this measurement.
	sample_sum	BasicType	Total summation of the entries of the sample.
Name	sample_squared_sum	float64	Squared summation of the entries of the sample.
event_st	min	BasicType	Minimum value from the sample.
event_st	max	BasicType	Maximum value from the sample.
event_st	std	float64	Standard deviation from the sample.
num_sai	mean	float64	Arithmetic mean calculated from the sample.
			-field param-
signal_charge	[num_channels, num_pixels]	Measurement::BasicType	Measurement of the signal charge over the considered sample in all channels and pixels.
signal_time	[num_channels, num_pixels]	Measurement::BasicType	Measurement of the signal time over the considered sample in all channels and pixels.
relative_gain	[num_channels, num_pixels]	Measurement::BasicType	Measurement of the relative gain over the considered sample in all channels and pixels.
relative_time	[num_channels, num_pixels]	Measurement::BasicType	Measurement of the relative time over the considered sample in all channels and pixels.
outliers_charge	[num_channels, num_pixels]	Measurement::BasicType	Measurement of the charge outliers the considered sample in all channels and pixels.
outliers_time	[num_channels, num_pixels]	Measurement::BasicType	Measurement of the time outliers over the considered sample in all channels and pixels.
failing_pixels	[num_channels, num_pixels]	bool	True if the algorithm failed to produce valid flat-field parameters in all channels and pixels.

TelescopeEvent and PixelWaveform structure of *DLO* Data Model

Telescope Event

event_id	uint64	The event ID assigned by the subarray trigger.	•
tel_id	uint16	The ID of the Telescope whose Camera sent the event.	•
event_type	uint8	The type of event, see definition in Sec. A.1.4.	
event_time	HiResTimeStamp	High-precision timestamp assigned by the Cherenkov Camera.	
pixel_status	uint8 [num_pixels]	See definition in Sec. A.1.5.	
first_cell_id	uint16 [N]	The cell id of the first cell in the ring-sampler that is read out (<i>optional</i> , N is 1 for SST, and 2120 for LST (265 modules * 8 chips/module)).	
num_channels	uint8	The number of channels in this event. The only possible values are 1 or 2.	
calibration_monitoring_id	uint64	ID of the CalibrationMonitoringSet containing the applied pre-calibration parameters.	

PixelWaveform

pixel_id	uint64	num_channels	ID of the pixel.	•
waveform	uint16	[num_pixels, num_samples]	R1-calibrated time-sampled image series in photoelectrons. <i>Notes:</i> (i) num_samples will be num_samples_nominal for all cases except when event_type==33, in which case num_samples_long will be used (ii) It is also possible to store images in DCs when the associated pre-calibration coefficients are set to 1, (iii), data volume reduction is already applied by ACADA to these data.	
pedestal_intensity	float32 [num_pixels]		Pedestal (baseline) intensity in each pixel in DC, and potentially additional information from the baseline. (<i>optional</i>).	

- Proposals B and C are designed to match the *DL0* data structure
- Even though the CamCalib belongs to the *DL1* production, we might want to align Data Model for the camera calibration coefficients with the *DL0* data structure since their application is the first task perform by DataPipe.
- *DL0* data volume reduction results in compress data and therefore only a specific region of interest needs to be calibrated

Proposal B: Designed to match *DLO* data structure (static storing)

Table A.3 – Flat-field parameters proposal B.

Name	Type	Description
pixel_id	uint64	ID of the pixel. (TBD: this could be stored in the metadata)
event_start	uint64	ID of the first event in the considered sample.
event_stop	uint64	ID of the last event in the considered sample.
num_samples	uint64	Number of events used for the calculation of flat-field parameters.
signal_charge [num_channels]	Measurement::BasicType	Measurement of the signal charge over the considered sample in pixel_id.
signal_time [num_channels]	Measurement::BasicType	Measurement of the signal time over the considered sample in pixel_id.
relative_gain [num_channels]	Measurement::BasicType	Measurement of the relative gain over the considered sample in pixel_id.
relative_time [num_channels]	Measurement::BasicType	Measurement of the relative time over the considered sample in pixel_id.
outliers_charge [num_channels]	Measurement::BasicType	Measurement of the charge outliers over the considered sample in pixel_id.
outliers_time [num_channels]	Measurement::BasicType	Measurement of the time outliers over the considered sample in pixel_id.
failing_pixels [num_channels]	bool	True if the algorithm failed to produce valid flat-field parameters in pixel_id.

Static vs dynamic: Store coefficients as onchange events

- Proposals A and B are designed for a static data storing. Pedestal/flat-field parameters and camera calibration coefficients are stored every iteration.
- Proposal C is designed for a dynamic data storing that is only saving parameters and coefficients to disk when they change.
- Pedestal and flat-field parameters are expected to be relatively stable in a given uncertainty at standard data taken. Stars in the field of view are suppose to move rather slow in comparison to the calculation of the parameters.
- Dynamic data storing would also allow a dynamic sample window for the calculation of the parameters.

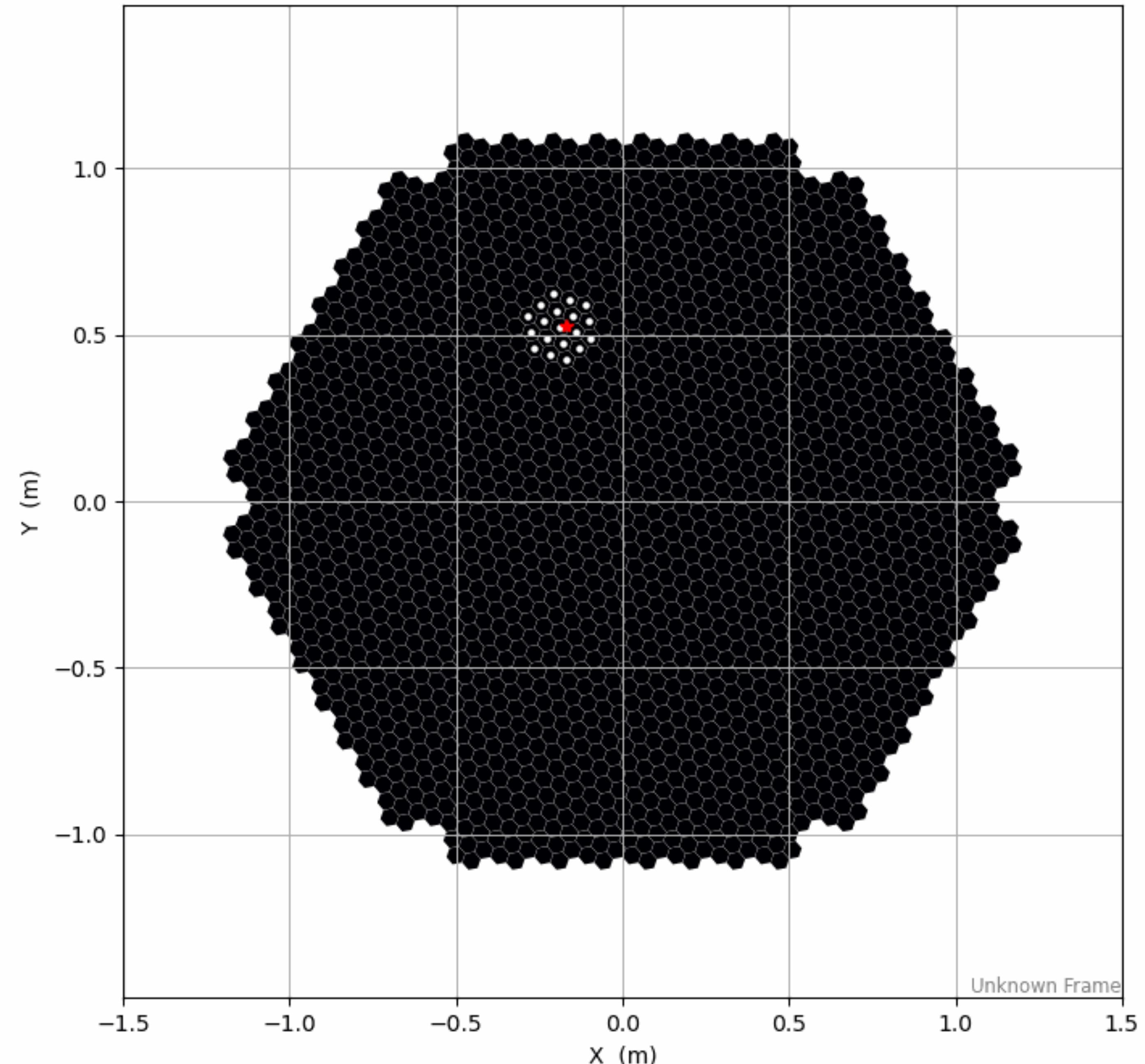

Proposal C: Designed to match *DLO* data structure (dynamic storing)

Table A.4 – Flat-field parameters proposal C.

Name	Type	Description
pixel_id	uint64	ID of the pixel. (TBD: this could be stored in the metadata)
event_start	uint64	ID of the first event in the considered sample.
signal_charge [num_channels]	Measurement::BasicType	Measurement of the signal charge over the considered sample in pixel_id.
signal_time [num_channels]	Measurement::BasicType	Measurement of the signal time over the considered sample in pixel_id.
relative_gain [num_channels]	Measurement::BasicType	Measurement of the relative gain over the considered sample in pixel_id.
relative_time [num_channels]	Measurement::BasicType	Measurement of the relative time over the considered sample in pixel_id.
outliers_charge [num_channels]	Measurement::BasicType	Measurement of the charge outliers over the considered sample in pixel_id.
outliers_time [num_channels]	Measurement::BasicType	Measurement of the time outliers over the considered sample in pixel_id.
failing_pixels [num_channels]	bool	True if the algorithm failed to produce valid flat-field parameters in pixel_id.

Discussion

LSTCam

Low precision timestamps vs event IDs

- Timestamps are common identifiers which allows to select a matching sampling window for the pedestal and flasher events.
- With event IDs (and the obs ID) one could reconstruct the timestamps. However, the sampling window for a data structure based on event IDs would not match to 100%.

Current scheme based on timestamps

Name	Type	Description
sample_time	float64	Time (in s) associated to the considered sample.
sample_time_min	float64	Minimum time (in s) of the considered sample.
sample_time_max	float64	Maximum time (in s) of the considered sample.
num_samples	uint64	Number of events used for the calculation of flat-field parameters.
signal_charge [num_channels, num_pixels]	Measurement::BasicType	Measurement of the signal charge over the considered sample in all channels and pixels

Scheme based on event IDs

Name	Type	Description
event_start	uint64	ID of the first event in the considered sample.
event_stop	uint64	ID of the last event in the considered sample.
num_samples	uint64	Number of events used for the calculation of flat-field parameters.
signal_charge [num_channels, num_pixels]	Measurement::BasicType	Measurement of the signal charge over the considered sample in all channels and pixels

Discussion

Table 1.1 – Discussion on the camera calibration Data Model.

	Advantages	Disadvantages
Proposal A	<p><i>This proposal is designed to match the current ctapipe data structure (static storing).</i></p> <ul style="list-style-type: none">allow to store the relevant information of the whole camera in one compact data structure/tablecamera calibration coefficients are calculated over a static time interval assuming a constant rate of data taken	<ul style="list-style-type: none">waveform data of <i>DL0/Event/Telescope</i> has a pixel-wise data structure from the PixelWaveform containercamera calibration coefficients of each pixels have to be read even though only a fraction of pixels may be needed for the compressed DLO datastable camera calibration coefficients are stored every iteration
Proposal B	<p><i>This proposal is designed to match the DL0/Event/Telescope data structure (static storing).</i></p> <ul style="list-style-type: none">camera calibration coefficients follows the pixel-wise data structure from the Pixel-Waveform containercamera calibration coefficients are calculated and stored over a static time interval assuming a constant rate of data taken	<ul style="list-style-type: none">DataPipe needs to assemble the shower images from the pixel-wise calibration datastable camera calibration coefficients are stored every iteration
Proposal C	<p><i>This proposal is designed to match the DL0/Event/Telescope data structure (dynamic storing).</i></p> <ul style="list-style-type: none">camera calibration coefficients follows the pixel-wise data structure from the Pixel-Waveform containerallow to store pixel-wise camera calibration coefficients dynamically when they change<ul style="list-style-type: none">sliding window (number of samples) used for the calculation can be dynamic	<ul style="list-style-type: none">DataPipe needs to assemble the shower images from the pixel-wise calibration datastored camera calibration coefficients have different time intervals depending on the pixels

Main discussion points

- Should be use timestamps or event IDs for defining the sample window?
- Would a dynamic sample window for the calculation of the coefficients be useful and practical?
- At which stage we should assemble the shower images from the pixel-wise *DL0* and calibration data?
- Different proposal better suited for Cat-B or Cat-C calibration calculation?

Merci pour votre attention!

