

Gamma-ray Properties of Mixed Morphology Supernova Remnants

Jemma Pilossof Supervisor: Dr Katie Auchettl

Supernova Remnants (SNRs)

Shell type:

- Bright radio/X-ray shell. •
- Due to synchrotron radiation \bullet where particles have been accelerated at the shock front.

Composite:

- Bright radio/X-ray shell - \bullet synchrotron radiation.
- Bright centre due to pulsar wind \bullet nebula (PWN) emitting nonthermal synchrotron radiation.

Mixed Morphology (MM):

- Bright shell synchrotron \bullet radiation.
- Bright centre due to thermal X- \bullet rays from swept up ISM.
- Most found to be interacting \bullet with molecular clouds.

G11.2-0.3

Diffusive Shock acceleration

Gamma-ray emission from MM SNRs

- Many are strong emitters of GeV gamma rays which is unexpected as most are middle aged.
- In an attempt to understand this many individual studies have been conducted but a consistent analysis of the population has not yet been undertaken.

<u>Aim</u>: Analyse 13.5 years of FERMI-LAT data for the population of MM SNRs in the Milky Way, to better understand the gamma ray and particle acceleration properties of this class.

This view shows the entire sky at energies greater than 1 GeV based on 12 years of data from Fermi's Large Area Telescope. Credit: NASA/DOE/Fermi LAT Collaboration

Population

Remnant	Other names	Remnant	Other names	0.000
G0.0+0.0	Sgr A East	G116.9+0.2	CTB 1	G344.7-0.:
G6.4-0.1 G8.7-0.1	W28 W30	G132.7+1.3	HB3	X X.
G21.8-0.6	Kes 69	G156.2+5.7		
G31.9+0.0	Kes 77, 3C391	G160.9+2.6	HB9	
633 6+0 1		G166.0+4.3	VRO 42.05.01	
G34.7-0.4 G38 7-1 3	W44, 3C392	G189.1+3.0 G272.2-3.2	IC 443, HB21	
G41.1-0.3 G43.3-0.2	3C397 W49B, 3C398	G290.1-0.8 G298.6-0.0	MSH 11-61A	
G49.2-0.7 G53.6-2.2	W51C 3C400.2, NRAO 611	G304.6+0.1 G311.5-0.3	Kes 17	G352.7-
G65.3+5.7		G327.4+0.4 G337.8-0.1	Kes 27 Kes 41	
G82.2+5.3	W63	G344.7-0.1 G346.6-0.2		
G85.9-0.6		G348.5+0.1	CTB 37A	+
G89.0+4.7	HB21	G352.7-0.1 G355.6-0.0		• •
G93.3+6.9 G93.7-0.2	DA 530, 4C(T)55.38.1 CTB 104A, DA 551	G357.7-0.1 G359.1-0.5	The Tornado, MSH 17-39	

Images from NASA/CXC/SAO

Detection significance maps – Detected Sources

Detection significance maps – Non-detected Sources

Spectral Energy Distribution (SED)

15:00.0

39380

4FGL J1920.7+

12:00.0

7106

19:20:00.0

9140

Fitting SEDs

Power law:

$$\frac{dN}{dE} = N_0 E^{-1}$$

Power law with Exponential Cut off:

$$\frac{dN}{dE} = N_0 E^{-\Gamma} e^{-\left(\frac{E}{E_c}\right)^{-\mu}}$$

Broken Power law:

$$\frac{dN}{dE} = N_0 E^{-\Gamma} \left[\left(1 + \left(\frac{E}{E_b} \right) \right)^{\Gamma - \Gamma_2} \right]^{-1}$$

Fitting SEDs

Power law:

$$\frac{dN}{dE} = N_0 E^{-1}$$

Power law with Exponential Cut off:

$$\frac{dN}{dE} = N_0 E^{-\Gamma} e^{-\left(\frac{E}{E_c}\right)^2}$$

Γ = Photon index

Broken Power law:

$$\frac{dN}{dE} = N_0 E^{-\Gamma} \left[\left(1 + \left(\frac{E}{E_b} \right) \right)^{\Gamma - \Gamma_2} \right]^{-1}$$

Fitting SEDs – W28

Fitting SEDs

Results - Molecular cloud interaction

Results - Molecular cloud interaction

Results – Type la vs Core-collapse

Results – Type Ia vs Core-collapse

Results – Type la vs Core-collapse

Results – Type la vs Core-collapse

Gamma-ray emission processes

Neutral pion decay:

Inverse Compton Scattering:

Gamma-ray emission from SNRs

Simulated broadband spectrum from a supernova remnant undergoing efficient diffusive shock acceleration of electrons and protons (Slane et al 2015).

Gamma-ray emission from SNRs

Simulated broadband spectrum from a supernova remnant undergoing efficient diffusive shock acceleration of electrons and protons (Slane et al 2015).

Modelling the Origin of the Gamma-ray emission

Density: $62 \pm 6 \ cm^{-3}$ Proton energy: $1^{+0.3}_{-0.1} \times 10^{49}$ erg Electron energy: $3^{+3}_{-2} \times 10^{47}$ erg

Origin of the Gamma-ray emission

Density

Source	Amplitude $\times 10^{47} TeV^{-1}$	Γ_p	Γ_{e}	E _{cp} (TeV)	E_{ce} (TeV)	n_h (cm ⁻³)	K_{ep} (×10 ⁻³)	$\ln \mathcal{L}$
W28	$1.56^{+0.37}_{-0.37}$	$2.46^{+0.04}_{-0.04}$	$2.39^{+0.09}_{-0.19}$	$2.22^{+0.37}_{-0.28}$	$77.97^{+45.69}_{-30.29}$	$62.13_{-6.07}^{+6.14}$	$9.83^{+1.07}_{-1.28}$	-13.5
W44	$3.48^{+0.44}_{-0.45}$	$2.57^{+0.01}_{-0.01}$	$0.54_{-0.04}^{+0.06}$	$1.06^{+0.01}_{-0.01}$	$4.56^{+1.31}_{-1.33}$	$131.74^{+15.49}_{-12.69}$	$5.02^{+0.61}_{-0.6}$	-205.31
IC443	$0.71^{+0.08}_{-0.06}$	$2.22^{+0.01}_{-0.01}$	$0.12^{+0.02}_{-0.02}$	$0.99^{+0.0005}_{-0.0004}$	$0.97^{+0.003}_{-0.005}$	$519.26^{+31.70}_{-30.47}$	$10.92^{+1.05}_{-1.23}$	-46.99
W51C	$3.01^{+0.59}_{-0.54}$	$2.36^{+0.02}_{-0.01}$	$0.11^{+0.02}_{-0.03}$	$0.99^{+0.002}_{-0.002}$	$0.97^{+0.006}_{-0.007}$	$599.64^{+104.32}_{-96.79}$	$10.64^{+2.95}_{-2.43}$	-163.48
W49B	$97.3^{+29.3}_{-19.6}$	$2.27^{+0.03}_{-0.03}$	$1.91^{+0.27}_{-0.5}$	$1.47^{+0.15}_{-0.16}$	$0.98^{+0.009}_{-0.009}$	$50.59^{+11.72}_{-13.04}$	$10.42^{+1.94}_{-1.7}$	-21.78
G298.6-0.0	$23.7^{+10.50}_{-6.91}$	$2.44^{+0.04}_{-0.05}$	$2.05^{+0.35}_{-0.49}$	$1.44_{-0.25}^{+0.24}$	$0.98^{+0.010}_{-0.009}$	$50.94^{+14.16}_{-12.70}$	$10.44_{-3.58}^{+3.03}$	-7.11
Kesteven 77	$9.31^{+5.08}_{-3.46}$	$2.33_{-0.17}^{+0.14}$	$2.52^{+0.06}_{-0.12}$	$1.3^{+0.12}_{-0.16}$	$0.98^{+0.005}_{-0.005}$	$53.62^{+16.08}_{-10.65}$	$10.69^{+3.47}_{-3.00}$	-3.96
W30	$5.21^{+6.94}_{-2.51}$	$2.25^{+0.10}_{-0.15}$	$2.02^{+0.29}_{-0.62}$	$1.47^{+0.45}_{-0.35}$	$0.98^{+0.01}_{-0.01}$	$48.12^{+33.83}_{-24.57}$	$10.05^{+6.99}_{-5.40}$	-3.09
Kesteven 17	$19.8^{+19.20}_{-19.80}$	$2.39^{+0.13}_{-0.62}$	$2.06^{+0.52}_{-0.93}$	$1.45_{-0.20}^{+0.22}$	$0.98^{+0.009}_{-0.007}$	$48.12^{+22.12}_{-15.34}$	$9.91^{+5.17}_{-4.07}$	-3.84
G357.7-0.1	$6.85^{+10.50}_{-6.85}$	$2.5^{+0.24}_{-0.31}$	$2.02^{+0.61}_{-0.96}$	$1.42_{-0.19}^{+0.24}$	$0.97^{+0.01}_{-0.01}$	$50.03^{+20.84}_{-23.43}$	$9.95^{+4.61}_{-5.27}$	-4.38

- Density ranges between 48-600 cm^{-3} .
- X-ray densities range between 0.01-10 cm^{-3} .
- This discrepancy may be due to the presence of cold clumps of material that do not emit in thermal X-rays.

Particle Energy

Source	$W_p \times 10^{49} { m ergs}$	$W_{eBrem} \times 10^{47} { m ergs}$	$W_{eIC} imes 10^{46} { m ergs}$	$W_e \times 10^{47} { m ergs}$	$W_{ep} \times 10^{49} { m ergs}$
W28	$1.16^{+0.16}_{-0.33}$	$1.8^{+2.68}_{-1.28}$	$7.63^{+7.64}_{-4.17}$	$2.56^{+3.44}_{-1.69}$	$1.18^{+0.19}_{-0.34}$
W44	$4.2^{+0.50}_{-0.54}$	$0.21^{+0.01}_{-0.008}$	$2.14_{-0.81}^{+0.95}$	$0.43^{+0.19}_{-0.16}$	$4.2^{+0.50}_{-0.54}$
IC443	$0.17^{+0.01}_{-0.01}$	$0.011^{+0.002}_{-0.002}$	$0.11^{+0.02}_{-0.02}$	$0.023^{+0.004}_{-0.005}$	$0.17^{+0.01}_{-0.01}$
W51C	$1.33_{-0.18}^{+0.26}$	$0.05^{+0.03}_{-0.01}$	$0.47\substack{+0.14\\-0.14}$	$0.09^{+0.03}_{-0.03}$	$1.33^{+0.26}_{-0.18}$
W49B	$29.37^{+9.97}_{-5.53}$	$9.22^{+25.8}_{-6.40}$	$73.35_{-45.98}^{+121.96}$	$16.56^{+38.00}_{-11.00}$	$29.54^{+10.35}_{-5.64}$
G298.6-0.0	$15.7^{+5.16}_{-3.52}$	$4.55^{+32.16}_{-3.74}$	$30.58^{+108.25}_{-23.39}$	$7.61^{+32.99}_{-6.08}$	$15.78^{+5.59}_{-3.58}$
Kesteven 77	$3.48^{+1.47}_{-1.25}$	$34.25^{+32.05}_{-23.55}$	$99.59^{+84.24}_{-60.91}$	$44.21_{-29.64}^{+40.47}$	$3.92^{+1.88}_{-1.55}$
W30	$1.35^{+1.33}_{-0.56}$	$0.82^{+4.38}_{-0.73}$	$5.62^{+18.80}_{-4.80}$	$1.38^{+36.25}_{-1.21}$	$1.36^{+1.39}_{-0.58}$
Kesteven 17	$10.68^{+6.54}_{-10.68}$	$3.18^{+105.18}_{-3.18}$	$21.44^{+205.05}_{-21.44}$	$5.32^{+125.68}_{-5.32}$	$10.73^{+7.80}_{-10.73}$
G357.7-0.1	$7.57^{+6.66}_{-7.57}$	$0.49^{+30.87}_{-0.49}$	$3.86^{+74.51}_{-3.86}$	$0.87^{+38.32}_{-0.87}$	$7.58^{+7.04}_{-7.58}$

- Average total particle energy is 8×10^{49} erg.
- ~8% of a the 10^{51} erg released by a supernova goes into accelerating particles.

Summary

- MM SNRs are extremely bright GeV gamma-ray emitters.
- Their dense environment leads to significantly impact the gamma-ray emission from SNRs.
- Potentially only MM SNRs from core-collapse supernovae are detected in gamma-rays.
- MM SNRs have a narrow age range and their average detected age is much higher than non-MM SNRs.
- Neutral pion decay dominates the gamma-ray emission.
- ~8% of a supernova's explosion energy goes into particle acceleration.
- Gamma-ray densities are much higher than those derived using X-rays.

Future Work with CTA

- CTA will be able to provide a resolution of \sim few arcmin over an energy range $\sim 10-10^5~{\rm GeV}$
- Obtain higher resolution data of these MM SNRs compared to Fermi-LAT.
- By using data from both CTA and Fermi-LAT a broader energy range of gammaray emission can be analysed.

