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lceCube

Gigaton neutrino detector located at the south pole
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lceCube

Muon neutrinos interact with the surrounding
ice/rock and produce muons that travel

through the detector. »
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o Produces Cherenkov light as it travels. om T~ St
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Motivation

IceCube uses path tracing to propagate light in the ice.
o However, most rays never reach a DOM.

Path tracers can be run backwards in time, but then most rays will never reach a light source.
o Path tracers can’t constrain both the starting and ending location of the rays.

The fundamental problem is that the interesting paths are highly constrained.
° |s there another way to approach this?



Approximations

DETECTOR BIAS PATH BIAS
Make the detectors much larger to capture Adjust the path the light takes to bias it
more rays. towards the detector.

o |Introduces bias that can’t be corrected for. o |ntroduces bias that can be corrected for.

o However, can massively increase variance to the
point of being useless.
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Can we do this without bias?




Path integration

The start and end locations of the ray can be constrained if the problem is specified in terms of a

classical path integral.
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Evaluation of the integral

Information can be extracted about the light propagation by framing the integrand as a
probability distribution:

G—S[f] — p[f] — p(ajl)yla 1y L2, Y2, 22, .. )

This distribution can be sampled with an MCMC.

More details on the construction of p[f] in the paper:

arXiv.org > hep-ex > arXiv:1811.04156

High Energy Physics - Experiment

Using path integrals for the propagation of light in a
scattering dominated medium

Gabriel H. Collin



Industry use

This idea inspired by a CGI rendering technique
called Metropolis light transport.
o Computer animation often runs into a similar

problem to us, where only a small fraction of
light paths are detectable.

o Canonical example is a light source in another
room that shines through a door that is only
slightly cracked open.

CGl industry mainly renders scenes that are
dominated by reflections.

Left: Rendering algorithm similar to Metropolis
light transport.

Right: Standard path tracing algorithm.

> In lceCube, light transport is entirely scattering.

http://raytracey.blogspot.com.es/2010/12/real-time-metropolis-light-transport-on.html



Reversible jump MCMC

The number of places where light scatters is not fixed.
° Thus, the dimensionality of the probability distribution is variable.

Reversible Jump Markov Chain Monte Carlo can change the number of dimensions in a
probability distribution.



Reversible jump MCMC

The acceptance probability is based on the following ratio:
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Reversible jump for light propagation

A path with N vertices exists in RSN
o We wish to propose a new path with N+1 vertices.

o Requires a g with 3 parameters, and a choice of g. 7

g selects a pair of vertices.

Then inserts a new vertex between them.
o Position of new vertex based on three random values from q



Path length distribution

From the samples created by the MCMC, the probability distribution for path length can be
easily extracted.
o |[ceCube measures photon arrival time, which is directly related to path length.

o P(L < X) = fraction of samples where the length of the path is less than X.

To validate the method, the length distribution produced by the path sampler can be compared
to one created using a ray tracer.

An MCMC usually requires a burn-in period, however this can be partially avoided by seeding
the MCMC with the ray-tracer.



Synthetic test case

One light source, with two detectors
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Path length distribution
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Performance

Ray tracer is also CPU based to allow a performance comparison.

0.1m ~46000 s ~23s
0.2 mt ~78000 s ~74 s
0.3 m ~99000 s ~232s
0.4 m- ~122000 s ~373s
0.5 mt ~156000 s ~416 s

Performance improvement of 300 to 1000 times faster.
o The b=0.3to 0.5 m cases are probably most comparable to conditions in IceCube.



Other applications

This approach to simulation is useful when initial and final states are highly constrained.

Litmus test:

o Are you throwing out the vast majority of your events (99.9%+) due to them not meeting one of these
constraints?

Constraints do not have to just be in position.
o Eg:initial and final angle for light passing through a planetary atmosphere.
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Other applications

Path does not just have to describe light.
o Eg: Simulation of transport of neutrons.

Constraints could be discrete parameters.
o Eg: Simulation of atmospheric showers.

° |nitial condition: particle must be a nucleus.
o Final condition: shower products must reach underground detector.

May also be possible to incorporate selection cuts into the constraint.



Disadvantages

Relative and especially absolute light yields are  To estimate the variance on the light yield

difficult to calculate. o Ray tracer and path sampler were run four
times. (standard deviation in parentheses.)

Relative light yield is given by the ratio of
normalisations for each detector.

o This is equivalent to finding a Bayes factor in

. 0.67(3) 0.64(7)
Bayesian inference.

0.2 m' 0.79(2) 0.77(1)

, , 0.3 m 0.73(2) 0.76(7)

We can use the geometric estimator:

0.4 m' 0.68(2) 0.64(4)

0.5 m1 0.59(2) 0.50(6)

)/pa(x)

B Calv/pE(T)

p[v/pa(
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o Path sampler has higher variance.



A new approach?

Can we combine the advantages of path tracing
and metropolis light transport?
o Perhaps with Guided Path Tracing.

Run path tracing in batches.

o Use the “useful” rays in each batch to bias the
next batch.

o Results in minimal biasing, and therefore minimal
variance.

o Bias can be corrected for like event-weighting.

Left: Path tracing. Right: Guided path tracing.

A further advantage is that this can slot into
many existing physics simulations.



Conclusion

Simulation of light can be posed as a path integral from which samples can be
drawn.

Reproduces the timing distribution of light incident on a detector.
o Up to 1000 times faster than a ray tracer in synthetic test case.

Method is generally applicable to a wide range of problems.
o When initial and final states are highly constrained.



Backup




Angular scattering distribution

Distribution
o(cosy) = fsppsr(cosy) + (1 — fsp)pug(cos),
2
N 11+g[14cosf]Ts
Simplified Liu: pSL(COS 9) — 5 g [ 5 ]
(cos6) 1 1 —g?
i e cost) = —
Henyey-Greenstein: PuG 2 (14 g2 — 2gcos 9)3/2



Detection probability

Conditional detection probability:

o(f,. 1) =exp(3cosw—Incosh(2cosw+0.7) — 1)

Chosen to follow IceCube DOM angular response.



Jump distributions

(s) = pe=Peee sin s

N = 9gmhg o

q(t) = (2 + 2cosht)™?,
1



Jump rates

(k)
p(n = n+1,k) = — o0
lell'rb(l)

(n — 1,k) = 1
pn —n k)= 5




Incident angle distribution

For a smoothly varying b:
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