Studying 30 Doradus in LMC with the CTA (excerpt from submitted consortium paper)

Pierrick Martin

22 Feb 2023

Context

- Deep survey of the LMC KSP
 - satellite dwarf galaxy at 50kpc distance
 - disk-like galaxy seen with low inclination (i~20-30°)
 - 340h+150h exposure over ~7° patch of sky
 - (southern hemisphere target)
- Interest and limitations
 - major star-forming regions (esp. 30 Doradus or N11)
 - reduced line of sight confusion w.r.t. Galaxy
 - ... but distant: need powerful sources for detectable fluxes
 - ... and sources large enough for morphology studies
 - (3 arcmin PSF ~ 44 pc in LMC)

Context

Credit: Team Ciel Autral Ha,SII,OIII <u>APOD link</u> Image size 6°

Modeling star-forming regions

- Main assumptions
 - Point-like continuous CR injection (no specific mechanism)
 - CR injection spectrum PL with index 2.25 and cutoff at 1PeV
 - Hadronic emission only
 - Diffusion-loss transport (no advection, no reacceleration,...)
 - Homogeneous losses in average galactic gas density
 - Two-zone diffusion (typically suppressed within r<100pc and ISM-like beyond)
- Main questions addressed
 - Can we detect emission from SFRs/30 Doradus ?
 - For which set of injection luminosity and diffusion properties ?
 - Can we identify it as such and distinguish among scenarios ?
 - (leave aside question of specific acceleration process)

Modeling star-forming regions

Model calculation recipe

- Compute two-zone diffusion kernel for specific choice of diffusion coefficients
- Integrate kernel along line of sight over gas disk thickness
- Compute pion decay intensity distribution for average gas density
- Correct intensity distribution for actual gas density around target SFR

NB: Injection lasting for 5Myr but results little sensitive to that parameter at very high energies

Case of 30 Doradus

Top: Effect of confinement on intensity profiles Injection arbitrarily set at 10⁴⁰ *erg/s*

> Bottom: Intensity maps at 1TeV After actual gas distribution correction 30 Doradus SFR only Diffusion suppression by 3,30,300

Observation simulation/analysis

- Analysis setup
 - 340h exposure spread over LMC
 - IRF prod5-v0.1/South_z40_50h
 - Energy range 0.1-100TeV
 - gammalib/ctools
 - 3D maximum likelihood analysis with stacked data
 - source model: SFR+instrumental background only !
 - using Asimov data sets to derive sensitivities

Optimistic analysis conditions: No source confusion (no other sources than the SFR) 3D maximum likelihood with true models

Observation simulation/analysis

Constraints on 30 Doradus main properties

Observation simulation/analysis

Survey sensitivity to emission from 30 Doradus SFR
Reference case: homogeneous ISM-like diffusion

Sensitivity curves including energy-dependent morphology TS=25 in each bin

> Models with diffusion suppression by factor 100 or 300 and two efficiencies: 1 or 10% of 10³⁹ erg/s

Detections up to ~10TeV Too short to constrain PeVatron nature of SFRs

Conclusion

30 Doradus detectability in LMC

- Injection of ~1-10% of 10³⁹ erg/s mechanical for simple detection
- Diffusion suppression by ~10-100 or more w.r.t. large-scale average
- Stronger requirements for constraints on transport process
- Survey not sensitive enough for constraints on PeVatron nature
- Not addressed
 - Source confusion (other sources in the SFR)
 - Disentangling from large-scale interstellar emission
 - Realistic data analysis (sources and methods)

For a critical perspective on what can be done on SFRs, see *Multiple emission components in the Cygnus cocoon detected from Fermi-LAT observations* https://arxiv.org/abs/2301.04504