

CTA-Oz Meeting #2, 2022

# Millisecond pulsars in Omega Centauri

Shi Dai ARC DECRA Fellow Western Sydney University











Ibata et al. (2019)



Baumgardt et al. (2019)

- Is there an intermediate-mass black hole in the centre?
- Can we find any evidence of dark matter annihilation?



Staveley-Smith et al. (2022)

- Is there an intermediate-mass black hole in the centre?
- Can we find any evidence of dark matter annihilation?



- Is there an intermediate-mass black hole in the centre?
- What is the origin of Gammaray? Dark matter annihilation?



- Where are the pulsars???
- 260 pulsars have been found in 36 globular clusters!

Henleywillis et al. (2018)



- Five millisecond pulsars (MSPs) discovered (Dai et al. 2020).
- Four isolated, one in a 2hr binary with a low-mass star.
- All five MSPs located within in the core of Omega Cen.



|                                                                               | J1326 - 4728 A              | J1326-4728B                | J1326 - 4728C              | J1326-4728D                | J1326 - 4728 E              |
|-------------------------------------------------------------------------------|-----------------------------|----------------------------|----------------------------|----------------------------|-----------------------------|
| RAJ (J2000)                                                                   | 13:26:39.6700(2)            | 13:26:49.5686(3)           | 13:26:55.2213(7)           | 13:26:32.7130(2)           | 13:26:42.67835(7)           |
| DECJ (J2000)                                                                  | -47:30:11.639(3)            | -47:29:24.886(4)           | -47:30:11.75(1)            | -47:28:40.050(3)           | -47:27:23.999(1)            |
| $\nu$ (Hz)                                                                    | 243.38088019776(7)          | 208.68683313296(8)         | 145.6057701814(2)          | 218.3962371417(1)          | 237.65856646670(2)          |
| $\dot{\nu} ~({ m Hz/s})$                                                      | $-1.621(7) \times 10^{-15}$ | $2.369(2) \times 10^{-15}$ | $-2.06(2) \times 10^{-16}$ | $1.965(3) \times 10^{-15}$ | $-9.190(6) \times 10^{-16}$ |
| PMRA (mas/yr)                                                                 | -5(1)                       | -2(3)                      | -1(4)                      | -2(2)                      | -4.5(7)                     |
| PMDEC (mas/yr)                                                                | -8(2)                       | -10(4)                     | -7(5)                      | -9(3)                      | -7.4(9)                     |
| PEPOCH (MJD)                                                                  | 58447.77                    | 58768.0                    | 58447.77                   | 58797.01                   | 58796.79                    |
| Time span (MJD)                                                               | 58444.95 - 59709.54         | 58444.95 - 59709.54        | 58643.33 - 59709.54        | 58700.27 - 59709.54        | 58447.79 - 59709.54         |
| $DM (cm^{-3} pc)$                                                             | 100.313(3)                  | 100.273(3)                 | 100.648(4)                 | 96.542(3)                  | 94.3841(9)                  |
| $RM (rad m^{-2})$                                                             | -18(8)                      |                            |                            |                            |                             |
| Binary parameters (ELL1 model, Hobbs et al. 2006)                             |                             |                            |                            |                            |                             |
| $P_{\rm b}$ (days)                                                            |                             | 0.089611204(1)             |                            |                            |                             |
| $\chi$ (ls)                                                                   |                             | 0.021452(4)                |                            |                            |                             |
| $T_{\rm asc}$ (MJD)                                                           |                             | 58768.037248(4)            |                            |                            |                             |
| $\eta~(10^{-3})$                                                              |                             | -0.1(4)                    |                            |                            |                             |
| $\kappa \ (10^{-3})$                                                          |                             | -0.4(4)                    |                            |                            |                             |
| Association with X-ray sources (Henleywillis et al. 2018; Zhao & Heinke 2022) |                             |                            |                            |                            |                             |
| RAJ (J2000)                                                                   | 13:26:39.670                | 13:26:49.574               | 13:26:55.231               |                            | 13:26:42.670                |
| DECJ (J2000)                                                                  | -47:30:11.64                | -47:29:24.18               | -47:30:11.63               |                            | -47:27:23.56                |
| $ m Flux~(10^{-16}ergcm^{-2}s^{-1})$                                          | 6.1                         | 20.3                       | 9.2                        |                            | 6.3                         |



Dec (J2000)

### What is the origin of Gamma-ray?



- To search for pulsed Gamma-ray signals, we used Pass 8 data from the Fermi L AT selected with energies 0.1–30 GeV within 3 deg of the cluster centre and with a time range MJD 54682-59900 (14.3 yr)
- No pulsed Gamma-ray has been detected so far.

Zhao & Heinke (2022)

## What is the origin of Gamma-ray?



- Four pulsars are associated with X-ray sources.
- With the spectral index of X-ray, we can estimate the Gamma-ray photon flux.
- Pulsar B could contribute up to 30% of the observed Gamma-ray.

Zhao & Heinke (2022)

## What is the origin of Gamma-ray?



- Four pulsars are associated with X-ray sources.
- With the spectral index of X-ray, we can estimate the Gamma-ray photon flux.
- Pulsar B could contribute up to 30% of the observed Gamma-ray.

Berteaud et al. (2021)

#### PSR J1326-4728B: the first irregularly eclipsing black widow pulsar



Pulse phase



- The observed spin-down of pulsars in GCs is dominated by the dynamical effect caused by the gravitational potential of GC.
- Observed pulsar spin-down can be translated into pulsar line-of-sight acceleration, which allows us to probe the dynamics in the core region.
- IMBH v.s. a population of stellarmass BHs?

- Omega Cen hosts a population of MSPs.
- No Gamma-ray pulsation has been detected so far.
- Omega Cen could be a CTA target?
- Timing and discovery of more MSPs will allow us to answer several key questions about Omega Cen.

