CTA-Oz Meeting \# 2 2022, Adelaide
The peculiar gamma-
Roland Crocker rayphenomenology

Australian National University of Terzan 5

CTA-Oz Meeting \#2 2022, Adelaide

The peculiar gammaray phenomenology
 Roland Crocker
 of Terzan 5
 Australian National University

...work in progress with Mark Krumholz, Jim Hinton, and others

Terzan 5 Globular Cluster (GC)

* One of the Milky Way's most massive GCs
* Largest MSP population of any GC
- Brightest gamma-ray (GeV band) GC
* Located in the Galactic Bulge, only 200 pc above plane

Terzan 5 Globular Cluster

* About 30 Galactic MSPs detected in $\sim \mathrm{GeV}$ band with Fermi data
* Terzan 5, uniquely amongst GCs, detected in the TeV band by HESS (Abramowski+2011)
* The Terzan 5 associated TeV source is semi-resolved and extended
* The centroid of the extended TeV emission is displaced off GC centre (where the MSPs concentrate)

Terzan 5 @ TeV (Abramowski+2011)

H.E.S.S.
$-24^{\circ} 40^{\prime}$
$-24^{\circ} 50^{\prime}$

$-25^{\circ} 00^{\prime}$

Terzan 5 @ TeV (Abramowski+2011)

H.E.S.S.

$-25^{\circ} 00^{\prime}$

Terzan 5 @ TeV (Abramowski+2011)

H.E.S.S.

$-25^{\circ} 00^{\prime}$

Is the TeV source really associated to Ter 5 ?

* Abramowski+2011 calculate the chance overlap probability as $\sim 10^{-4}$
* The GeV and TeV spectral data points match well

Spectrum Ter 5

Spectrum Ter 5

Spectrum well fit as curvature radiation + inverse Compton

The Big Mystery: why the displacement?

* Lightfield energy density and (naively) CR electron/ positron energy density should peak in the centre of the GC, so why doesn't the surface brightness peak here?

The Big Mystery: why the displacement?

* A cosmic ray transport effect?
* Point: the $\mathrm{TeV}+$ radiation is produced by $\mathrm{CR} \mathrm{e}^{ \pm}$with energies $>10 \mathrm{TeV}$, or Lorentz gamma factors $>10^{7}$; if $\mathrm{e}^{ \pm}$ are not moving in our direction, we do not see the radiation they emit
* The GC is moving super-sonically through the disk ISM
* It has a bow shock and a magnetotail in the direction opposite its motion in the local ISM gas rest frame

The Big Mystery: why the displacement?

These particles
moving at speed light

The Big Mystery: why the displacement?

The Big Mystery: why the displacement?

The Big Mystery: why the displacement?

IC
source
becomes
visible

What creates the pitch-angle-scattering magnetic turbulence?

* ...the cosmic rays themselves!
* Streaming instability: cosmic rays excite co-travelling Alfven waves with a wavelength equal to the CRs' gyroradius
* The Alfven waves pitch angle scatter the CRs
* At a population level the CRs end up travelling down the field lines at the local Alfven speed, with an isotropic pitch angle distribution in this frame (Kulsrud 1968)

The Big Mystery: why the displacement?

The Big Mystery: why the displacement?

The Big Mystery: why the displacement?

The Big Mystery: why the displacement?

[Individual particles still moving at c]

Transport model

$$
\begin{aligned}
\frac{\partial f(t, z, \mu)}{\partial t}+v \mu \frac{\partial f(t, z, \mu)}{\partial z} & =\frac{\partial^{2}}{\partial \mu^{2}}(\mathcal{D}(\mu) f(t, z, \mu)) \\
& -\frac{f(t, z, \mu)}{t_{\mathrm{c}}}+q(t, z, \mu)
\end{aligned}
$$

Transport model

$$
\begin{aligned}
\frac{\partial f(t, z, \mu)}{\partial t}+v \mu \frac{\partial f(t, z, \mu)}{\partial z} & =\frac{\partial^{2}}{\partial \mu^{2}}(\mathcal{D}(\mu) f(t, z, \mu)) \\
& -\frac{f(t, z, \mu)}{t_{\mathrm{c}}}+q(t, z, \mu)
\end{aligned}
$$

Transport model

Pitch angle diffusion

Transport model

Pitch angle diffusion

Transport model

Pitch angle diffusion

Numerical experiments

Transport model

$$
\begin{aligned}
\frac{\partial f(t, z, \mu)}{\partial t}+v \mu \frac{\partial f(t, z, \mu)}{\partial z} & \left.=\frac{\partial^{2}}{\partial \mu^{2}}(\mathcal{D} \mu \mu) f(t, z, \mu)\right) \\
& -\frac{f(t, z, \mu)}{t_{\mathrm{c}}}+q(t, z, \mu)
\end{aligned}
$$

Transport model

$$
\begin{aligned}
\frac{\partial f(t, z, \mu)}{\partial t}+v \mu \frac{\partial f(t, z, \mu)}{\partial z} & \left.=\frac{\partial^{2}}{\partial \mu^{2}}(\mathcal{D} \rho \mu) f(t, z, \mu)\right) \\
& -\frac{f(t, z, \mu)}{t_{\mathrm{c}}}+q(t, z, \mu)
\end{aligned}
$$

Find from fitting:

$$
t_{c} \sim 1 / 10 D
$$

t_{c} determined by synchrotron losses

$$
D \sim 10^{-10} / \mathbf{s}
$$

...consistent with streaming instability and known number density of CRs (as determined by IC observations)

