Statistical inference of astrophysical point-sources

GABRIEL COLLIN

What is a point source

Any object so small that it can be approximated as a mathematical point.

Thus, it is always located inside exactly one pixel.

However, instrumentation effects (PSF) means that it can contribute to more than one pixel. Eg:

- Diffraction spikes (seen in JWST image)
- Atmospheric diffraction
- Limited focusing (X-rays and gamma-rays)

Stars in foreground are point-sources.
Galaxies in background are not point-sources.

Statistics of a point-source

A single point-source is usually treated as a Poisson distribution.

- If the flux is constant
- (a usual approximation that we make)
- Then the arrival time of the gamma-rays is exponentially distributed.

For a pixelated detector

- There is Poisson distribution per pixel
- Weighted by
- PSF
- Effective area
- Detection probability

Point sources

Any group of point sources that have common properties is called a population.

The most familiar point source population is the stars in the night sky that are visible to the naked eye.

Here, stars are well separated.
Images intuitively reflect the mathematical modelling of points.

We can simply count all the stars and list their positions, in a database known as a catalogue.

Crowded fields

When many point sources are near each other, it can be difficult to distinguish them.

This is called a crowded field.

- It is entirely caused by experimental issues, such as the angular resolution of the instrument.

This kind of situation is becoming more common, as instruments push the limits.

- Cheaper, smaller experiments.
- Experiments that look deeper into the universe.

Statistics of N sources

For one point-source, we get a Poisson distribution with mean Λ

For two point-sources, we get a Poisson distribution with mean 2Λ

- (Assuming, for simplicity, the flux is the same for both)

Statistics of a population of sources

For zero point-sources, we get a Poisson distribution with a mean of zero.

- All probability mass is concentrated at $k=0$

If we don't know the number of sources, we need to add all of these together to account for all possibilities.

- This is very different looking to a single Poisson distribution.
- There are many humps.
- Large gap between zero and the first hump.

In numbers

I expect 10 photons per pixel, in some region of the sky.

- What is my probability of finding 0 photons? 12 photons? 100 photons?

Case 1: Dark matter, Poissonian statistics

- $P(12$ photons $)=10^{12} \mathrm{e}^{-10} / 12!\sim 0.1$
- $\mathrm{P}(0$ photons $) \sim 5 \times 10^{-5}$,
- $\mathrm{P}(100$ photons $) \sim 5 \times 10^{-63}$

Case 2: population of rare sources.

- Expect 100 photons/source, 0.1 sources/pixel - same expected \# of photons
- P(0 photons) ~ 0.9,
- $\mathrm{P}(12$ photons $) \sim 0.1 \times 100^{12} \mathrm{e}^{-100} / 12$! $\sim 10^{-29}$,
- $\mathrm{P}(100$ photons $) \sim 4 \times 10^{-3}$
- (plus terms from multiple sources/pixel, which I am not including in this quick illustration)

An intuitive view

Compound Poisson Generators

Full details and alternative derivation at

ユエ IV > astro-ph > arXiv:2104.04529

Astrophysics > Instrumentation and Methods for Astrophysics
[Submitted on 9 Apr 2021 (v1), last revised 27 Jun 2022 (this version, v2)]

A Compound Poisson Generator approach to Point-Source Inference in Astrophysics

Gabriel H. Collin, Nicholas L. Rodd, Tyler Erjavec, Kerstin Perez

How to build a distribution

We need some way to combine the Poisson distributions for each choice of N together.

- While accounting for the fact that N is itself a random variable
(because we don't know how many point-sources there are).

There's an easy way to do this.

- Using generating functions.

The generating function for a distribution $p(k)$ is

$$
G(z)=\sum_{k=0}^{\infty} p(k) z^{k} \quad p(k)=\left.\frac{1}{k!} \frac{d^{k}}{d z^{k}} G(z)\right|_{z=0}=\left.\sum_{n=0}^{\infty} p(n) \frac{1}{k!} \frac{d^{k}}{d z^{k}} z^{n}\right|_{z=0}=\sum_{n=0}^{\infty} p(n) \delta_{n k}
$$

The generating function

The full point-source population generating function is

$$
G_{k_{B}}(z)=\exp [N(\int d F \int d \varepsilon e^{\varepsilon F(z-1)} \underbrace{\mu_{B}(\varepsilon)}_{\varphi_{B}} p(F)-1)]
$$

$$
\begin{array}{llr}
\text { Mean no. of sources } & \text { Effective effective- } & \text { Flux distribution } \\
& \text { area distribution } & \text { (required to be broken power law) }
\end{array}
$$

All instrumental effects summarised in effective effective-area distribution

$$
\mu_{B}(\varepsilon)=\int d x \underbrace{T(x)}_{\text {Spatial template Effective area }} \delta(\varepsilon-\underbrace{\kappa(x)}_{\substack{\text { Detection } \\ \text { prob. }}} \int_{\Omega_{B}} d y \underbrace{\eta(y)}_{\text {PSF }} \phi(y \mid x))
$$

Most often needs to be simulated

Simulating the effective effective-area

Algorithm:

- Draw a point-source location from $T(x)$
- Distribute effective area $\kappa(x)$ among all pixels
- By drawing photons according to the PSF $\phi(y \mid x)$
- weighted by the detection probability $\eta(y)$
- Repeat multiple times.

Now each pixel has a list of effective areas.

- Histogram this list for each pixel. $\mu_{B}(\varepsilon)$ Construction
- This forms $\mu_{B}(x)$

The total likelihood

Straightforward to get probability over pixels.

- Computationally unfeasible to account for correlations.

Instead

- Get probability for one pixel.
- Take product over all pixels.

$$
p\left(\left\{n_{i}\right\}\right)=\prod p_{i}\left(n_{i}\right)
$$

- Mean-field approximation
- Does not take into account correlations between

$p_{0}(n)$	$p_{1}(n)$	$p_{2}(n)$
$p_{3}(n)$	$p_{4}(n)$	$p_{5}(n)$
$p_{6}(n)$	$p_{7}(n)$	$p_{8}(n)$

Application to galactic gamma-ray excess

Excess of gamma-rays at the galactic center

- Could be dark matter decay
- Could just be a population of previously unknown point-sources

Similar existing method called
Non-Poissonian Template Fitting (NP
Existing analysis prefers point source

Astrophysics > High Energy Astrophysical Phenomena
[Submitted on 16 Jun 2015 (v1), last revised 3 Feb 2016 (this version, v3)]
Evidence for Unresolved Gamma-Ray Point Sources in the Inner Galaxy
Samuel K. Lee, Mariangela Lisanti, Benjamin R. Safdi, Tracy R. Slatyer, Wei Xue

Not the end of the story

Since then, we found that NPTF has significant problems.

- Many instrumental effects can throw off the NPTF method.
- In X-ray astronomy these problems are most pronounced

Instrumental effects, in detail

Priors also a concern

Priors specified in terms of quantities that are not qualitatively relevant.

- Gives unexpected priors in relevant quantities!
- Always try to specify priors in quantities that you plan to plot

$$
\frac{\mathrm{d} N}{\mathrm{~d} F}=A\left\{\begin{array}{ll}
{\left[\prod_{j=2}^{m}\left(\frac{F_{b(j+1)}}{F_{b(j)}}\right)^{-n_{j}}\right]\left(\frac{F}{F_{b(m)}}\right)^{-n_{m}}} & F \in\left[0, F_{b(m)}\right] \\
\vdots \\
{\left[\prod_{j=2}^{i}\left(\frac{F_{b(j+1)}}{F_{b(j)}}\right)^{-n_{j}}\right]\left(\frac{F}{F_{b(i)}}\right)^{-n_{i}}} & F \in\left(F_{b(i+1)}, F_{b(i)}\right] . \\
\vdots & \\
\left(\frac{F}{F_{b(2)}}\right)^{-n_{2}} & F \in\left(F_{b(3)}, F_{b(2)}\right] \\
\left(\frac{F}{F_{b(2)}}\right)^{-n_{1}} & F>F_{b(2)}
\end{array} .\right.
$$

Log-uniform A, Log-uniform F

Fraction of flux assigned to point-sources over diffuse (dark-matter like)

Also not the only method

Probabilistic cataloguing is a different approach
arXiv:1607.04637

- Requires less assumptions.
- Potentially more sensitive.
- Much more computationally demanding.

Directly estimates the locations of every potential point-source.

Simulation
Green marks: True pointsource locations.
Blue marks: One sample from the posterior.

- Means many thousands of parameters that need to be estimated!
- Requires advanced trans-dimensional statistical inference method.

But, might be a better choice if expected no. of sources is low.

