Timing resolution and FEBv6 preseries performances Federica Bradascio CEA-IRFU, Paris-Saclay

NectarCAM Bordeaux Collaboration Meeting

11 October, 2022

Introduction

- Overview of studies performed on the entire camera and on 10 modules equipped with new FEBv6
- All tests performed in the testbench in CEA, Saclay

Timing performance

- Single pixel timing precision
- PMT transit time
- Global camera timing precision
- Camera trigger timing accuracy

Verification of FEBv6

- Deadtime
- Single pixel timing precision
- Linearity

Flat-Field Calibration (FFCL)

Random Generator

Federica Bradascio

Light sources

Laser

Night Sky Background

TiCkS module associates UCTS timestamp to the triggered signal

TOM calculation

ADC

- Time of Maximum (TOM) calculated for each waveform and each pixel
- 2 methods used:
 - Identifying the position of the largest peak of the waveform using the function scipy.signal.find peaks
 - Gaussian fit of the largest peak of the waveform

Measure of the reconstructed signal arrival time of the pulse = temporal position of the pulse maximum in the sampled window

Timing performance

Single pixel timing precision

Requirement: the RMS uncertainty on the mean relative arrival time in all pixels does not exceed 1 ns for amplitudes > 20 photons (5 p.e.)

- Camera illuminated by the laser source at a frequency of 1 kHz and intensity between 8.0 - 20 nW (1-200 p.e.)
- Time of maximum of each pulse for each pixel is measured using both methods
- Weighted mean of the RMS over all the pixels

Single pixel timing precision < 1 ns between 10 – 1000 photons

Performance tests of the NectarCAM, a MST camera for CTA

PMT transit time

- Each pixel works at a different HV to have the nominal gain of 40000 \rightarrow PMTs introduce different delays creating an offset between pixels
- It can be corrected at the analysis level
- Measurements: PMT set to the same HV and illuminated with FFCLS
- Fit performed for each pixel

Transfer time of the electron avalanche in the PMT, depending on the high voltage applied to the dynodes

PMT transit time

The TOM of each pixel is shifted to the value of the fit at 1000 V

Performance tests of the NectarCAM, a MST camera for CTA

Global camera timing precision

Requirement: the RMS of the Δt for each pair of pixel has to be < 2 ns for an illumination of 5 p.e. and background level of 0.125 p.e./ns

- Camera illuminated with laser source at ~20 p.e.
- TOM for each pixel and each event is calculated
- Δt for each pair of pixel is calculated with and without PMT transit time correction
- Δt reduced from **0.77 ns** to **0.22 ns**

Camera trigger time accuracy

Requirement: the RMS uncertainty on the trigger timestamp for an illumination of 200 p.e. and a background level of 0.125 p.e./ns has to be < 5 ns

- Camera illuminated with laser source with intensity between 2 - 50 p.e.
- For each measurement the start time of the laser flashes are recorded with a TiCkS board:

 $\Delta t_{\rm TiCks} = t_{\rm UCTS} - t_{\rm laser}$

• Distribution of the time difference of 2 consecutive events giving an upper limit on the accuracy of the timestamps for a periodic input signal:

$$\Delta t_{\text{UCTS}} = t_{\text{UCTS},i} - t_{\text{UCTS},i-1}$$

Verification of the FEB v6

Front End Board version 6 Preseries FEBv6 using NECTAr chip v3

- 10 FEBv6 installed in the NectarCAM camera
- FEBv6 preseries verification
- 3 parameters have been verified:
 - Linearity
 - Deadtime
 - Timing resolution

Performance tests of the NectarCAM, a MST camera for CTA

Goal: show that with new FEBv6 the deadtime is < 5% at 7 kHz trigger rate

- Deadtime measured for different voltages using 3 random sources:
 - FFCLS + random Poisson generator
 - Laser + random Poisson generator
 - NSB source
- Fit of the ΔT between two consecutive events for each measurement
- Fit results compared to deadtime values from camera server

FEBv6 deadtime

ΔT distribution using NSB source at 35 mA

Deadtime is not dominated anymore by the NECTAr chip

Combined deadtime using three sources: $0.745 \pm 0.001 \ \mu s$

Federica Bradascio

Performance tests of the NectarCAM, a MST camera for CTA

FEBv6 deadtime

The deadtime of the new FEBv6 is < 5% at 7 kHz trigger rate

Federica Bradascio

FEBv6 deadtime

FEBv6 single pixel timing precision

- **Requirement:** RMS uncertainty on the mean relative arrival time in the FEBv6 pixels < 1 ns for amplitudes in the range 20 to 2000 photons.
- TOM calculated for each pixel for 11 laser intensities using both methods

The mean rms per pixel is below 1 ns for a uniform illumination with amplitude above 20 photons

Federica Bradascio

Performance tests of the NectarCAM, a MST camera for CTA

FEBv6 linearity test is linearly proportional to the input light

Goal: to show that the light measured by the new FEBv6

- Linearity describes the output distortion with the increasing of the incident light intensity at a given gain
- Light inputs are created by the FFCLS at 15.5 V and a set of 6 absorptive Edmund filters to obtain a calibrated fraction of the flasher intensity

Average charge over all pixels

In order to convert the reconstructed and true charge into units of p.e., it is necessary to correct for the high gain — low gain ratio

Federica Bradascio

Gain ratio linear fit

Weighted least square fit performed in the linearity region to obtain the HG/LG ratio

FEBv6 linearity test

Federica Bradascio

Estimated charge integrated on a window of 18 ns

Linearity is better than 5% on more than 3 decades

Gain ratio of 13.40 ± 0.05

Conclusions Timing performance

- Single pixel timing precision < 1 ns for incoming light of intensity between ~ 10 and ~ 1000 photons
- PMT transit time correction of each pixel calculated and saved in database
- Global camera timing precision is 0.2 ns after correcting for PMT transit time effect
- Timing accuracy coming from the camera trigger timestamp relative to light arrival time is below 0.5 ns
- Paper in NectarCAM collaboration review

Conclusions

Verification of FEBv6

- 5% on more than 3 decades
- Deadtime of the FEBv6 is 0.745 +/- 0.001 μ s
- illumination above 20 photons

Paper in preparation

Linearity test shows that the FEBv6 response is linear better than

Single pixel timing precision of the FEBv6 is below 1 ns for light