The CTA reference sites and their implementation (SDEV)

SSC Meeting, - April 5th, 2013

Th. Stolarczyk, CEA Irfu/SAp

and

J.L. Augueres (SAp), J. Carr (PO), V.Diez Blanco (PO), W. Hoffman (PO), J.Houles (CPPM),

F.Mirabel (SAp), S. Palanque (Naulsen Prei)

PO = CTA Project Office

SDEV milestones and tasks

PHASE 1 : Define generic infrastructures and costs – now ending

- Implement the CTA infrastructures on a virtual ideal generic site
- > Define the infrastructures, estimate costs & risks
- PHASE 2 : Implement on the candidate sites now starting \rightarrow site selection
 - Evaluate departures when implementing on candidate sites
 - Design changes;
 - Extra costs;
 - Specific risks.
 - Submit results to the decision body(ies)

PHASE 3 : Detailed implementation on remaining sites - in 2014

The infrastructure definition

- Mostly subcontracted to a private company
 - Naulsen Prei (<u>http://naulsenprei.free.fr</u>)

Infrastructure definition

- Interactions within CTA & previous IACT experience
- Previous technical infrastructure experiences
 - Soleil synchrotron & CEA Saclay, France
- Very detailed PBS (hidden cost tracking)

Costing

- Used to estimate relative importance of components
- Standard European cost (France) from contacts with
 - Civil Engineers (Dumez et Borie)
 - Electric companies (Schneider Electric, Nexan)
 - > Other various sources ...
- Includes manpower
- No VAT

Th. Stolarczyk – SSC meeting – Heidelberg

The generic site definition

Power Water

> Access road

South ~ 10 km² North ~ 1 km² Reasonably flat No particular geological/hydrological conditions

Communication Gbit/s netw.

Free of charges and taxes Ready for construction

Th. Stolarczyk – SSC meeting – Heidelberg

April. 5, 2013

South 4 LST, 25 MST, 70 SST, 36 SCT

Th. Stolarczyk – SSC meeting – Heidelberg

April. 5, 2013

North 4 LST, 15 MST

Roads and parking

- Main : 3.0 km
- Secondary : 0.8 km
- Parking :2000 m²
- Central area : 30000 m²
- Buildings x 3
- Power : 2 MW peak
- Data Network : 1 Gbit/s

Th. Stolarczyk – SSC meeting – Heidelberg

Telescope foundations & roads

Landscaping

- Land preparation
 - > 10 cm over 30% of the site surface
- Telescope foundation excavation
- Trenches and pipes
- Roads, parking, fences
- Telescope foundations
 - Reinforced concrete
 - Computed for a "usual" soil
 - Might differ from one site to another
 - Might be adapted to seismicity

South	South				
6.2 M€	0.8 M€				

South	North			
7.8 M€	1.7 M€			

South	North				
4.4 M€	1.3 M€				

Operation building

Technical building

- 2000 m2
- Entrance of site
- Large unloading and storage space (6 tons crane)
- Mechanics and electronics workshops, clean and dark rooms
- Main parking area (2800 m2)

South	North			
2,5 M€	2,5 M€			

9

Th. Stolarczyk – SSC meeting – Heidelberg

April. 5, 2013

Residence building

Others

Water and sewer system

- Buildings : 70 liters /day/person, 40 persons max.
- Construction : 15 m³ /day (300 m³ LST concrete foundations).
- Fire hydrants
- Lightening protection
- Communication
 - Phone to outside & on site

Managing the peak power

Consumption (kW)	Tracking	Repositioning	Accelerating (5 - 20 s.)		
South	1200	2400	3400		
North	530	730	1600		

- Includes 300 kW for the buildings
- 2 (resp.1) MW extra power during acceleration
 - \blacktriangleright transformers accept huge overloads if short \rightarrow used for optimisation
 - Could be managed by on site energy storage
 Not considered in this study
- Conclusion 4 (resp. 2) MW required at the site fences for South (resp. North)

Power network architecture (e.g.: South)

Th. Stolarczyk – SSC meeting – Heidelberg

April. 5, 2013

Th. Stolarczyk – SSC meeting – Heidelberg

April. 5, 2013

400V

400V

_ _ _ _ _

14

Data Network

From J. Houles – Preliminary

Th. Stolarczyk – SSC meeting – Heidelberg

April. 5, 2013

Construction costs

Generic site cost estimate		South			North		
Indicative standard EU costs		M€	% ot total		M€	% ot total	
Landscaping and site Work		6.2	16%		0.8	5%	
Roads & parking, fences, gates		7.8	21%		1.7	12%	
Concrete of telescope foundations		4.4	12%		1.3	9%	
Electrical power network		3.0	8%		0.8	6%	
Data network (approx.)		1.0	3%		0.1	1%	
Others from PBS		0.8	2%		0.0	0%	
Infrastructure w/o buildings		23.1	61%		4.7	33%	
Operation builiding		2.0	5%		2.0	14%	
Technical building Residence building		2.5	7%		2.5	17%	
		2.1	6%	2.1	2.1	15%	
Buildings		6.6	18%		6.6	46%	
Total infrastructure		29.7	18%		11.3	79%	
Site characterisation		0.1	0%		0.1	0%	
Project management (10%)		3.0	8%		1.1	8%	
Total with 15% contingency		37.6	100%		14.3	100%	

Th. Stolarczyk – SSC meeting – Heidelberg

Project schedule

Th. Stolarczyk – SSC meeting – Heidelberg

Conclusion

Infrastructure investment cost: South ~ 38 M€, North ~ 15 M€

- Buildings in North oversized ?
- Obtained with "typical" 2012 EU-French prices
- No VAT

Not included

- Manpower for construction (10 FTE x 5 years ~3 M€)
- Operation cost (studied elsewhere)
- Cost for services to the fence
 - > Access roads, water, power, internet

Implementation on sites

Phase 2

What need to be evaluated for each site?

The cost of the generic infrastructure implementation

- Individual components may differ in nature e.g. because of geology/hydrology
- The costs related to the infrastructure location
 - Supply and access to services (power grid...)
 - Service reliability
- ▶ Operation/maintenance costs → who ?
- The cost for specific risks \rightarrow see J. Carr's talk
 - e.g. resistance of telescopes to earthquake, sand storms, winds...
 - economical risks ?

First ideas on site specificities

- Questionnaire sent on June 6th, 2012 to all sites
 - Answers received between September and December, 2012

Existing infrastructure

- > 2 MW electrical power : availability, reliability
- Access road
- High bandwidth communications cost to site.

Legal and formal aspects

- Procedure for building licences
- Local building codes
- Labour regulations

Local costs

- Roads, cable ducts, fences, concrete, buildings
- Fuel, electricity
- Manpower for various qualification
- Technical characteristics of the subsoil

Analysis of the answers – South

Chile

(Nov. 2012)

- No power line \rightarrow generators
 - grid@75-100 km-await ELT ?
- ▶ Roads from Paranal (≈20 km?)
- Data network @75km
- No soil study

Namibia - Aar

(Dec. 2012 - subcontracted)

- Power : Request sent to NamPower
- Road@ 6km
- Data Network : quotation from *Telecom* Namibia
- Soil : Study ordered to GeoLogic solutions
- Namibia Hess (Dec. 2012)
 - Power : Request sent to NamPower
 - Data Network : quotation from *Telecom* Namibia

- Argentina–S. Antonio d.l. Cobres (30 Aug. 2012)
 - Infrastructure and services provided, includes
 - Power (2 MW) for **free**
 - Access roads + site roads and ducts for free
 - Data network for **free**
 - No soil study
- Argentina Leoncito (30 Aug. 2012)
 - Infrastructure and services provided, includes
 - 13 kV exists, best distance to grid not mentioned
 - Road@10 km
 - Data Network : 100 km or through grid.
 - No soil study

Analysis of the answers - North

Mexico (4 Sept. 2012)

- Power grid : free for CTA
- Access road exists*
- Data network exists*
- Soil study ready to be ordered (in particular water pocket investig.)

* Minor costs

Spain – Tenerife (25 Sept. 2012)

- Power : 20kV/5 MW at Izana → connection:280 k€
- Many answers missing
- No soil study

USA- Yavapai ranch (1st Oct. 2012)

- ▶ 13 kV @20 km → quotation : 5 - 12 M\$
- Access road @4km
- Data Network : 175 Mbps 1.4 Gbps with monthly costs
- Soil characteristics given

• USA – Meteor Crater (1st Oct. 2012)

- ▶ 13 kV @10 km → quotation : 3.4 M\$
- Access road @ 1km
- Data Network : 175 Mbps 1.4 Gbps with monthly costs
- Soil characteristics given

THIS TABLE NOT TO BE TAKEN SERIOUSLY !!!

Analysis of the answers $I \in I : 30 US = I : 23 N = 5,69 AR = I6,54 M$

WARNING : APPROXIMATE NUMBERS USED AS AN ILLUSTRATION OF THE ANSWERS RECEIVED

Co ι	intry	Argentina	Argentina	Namibia	Namibia	Chile	Mexico	USA	USA	Spain
Location		S. Antonio	Leoncito	Aar	Hess	Armazones	San Pedro	Yavapai Ranch	Meteor Crater	Tenerife
7	Building licence (months)	6	3	Env.imp. study		4	Env.imp. Study	15	15	12
9	Access road (k€)	0	≈ 215 (0)	≈ 1000		≈ 90 €/m x 20 km?	Exists	240	60-120	NA
10	Road inside site (€/m)	0	21.5 (0)	84.6	84.6	90 74.8 60 6		60	NA	
11	Buried ducts (€/m)	0	12.3* (0)	2.7	2.7	42.5	5.75	45-90	45-90	unclear
12	Fences (€/m)	39*	31*	62.3	62.3	17	41.5	45	45	8
14	Concrete cost (€/m3)	600*	635	≈ 150 (nr)	≈ 150 (nr)	550 (pr)/900	120-228 (nr)	130 (nr)	130 (nr)	NA
15	Office cost (€/m2)	790	710	≈ 700	≈ 700	2800	long list	≈1650	≈1650	NA
16	Appartment (€/m2)	670	800	≈ 750	≈ 750	3300	long list	≈ 1450	≈ 1450	NA
17	Technical buildings (€/m2)	335	460	692	692	3600	long list	≈ 1100	≈ 1100	NA
18	Enginneer (k€/yr)	32	32	21-53	21-53	53-76	?	60-100	60-100	100-135
	Technician (k€/yr)	21	21	16-42	16-42	37	?	60	60	83
	Housework (k€/yr)	16	16	> 3.5	> 3.5	20	?	30	30	60
20	Data network/cost	0	≈ 2.6 M€ (or grid) (0)	Quot. @30km	Quot. @90km	10 €/m x ??? 575€ ? Microw Micro @>175Mbs @>175		Microw @>175Mbs	NA	

Th. Stolarczyk – SSC meeting – Heidelberg

Preliminary conclusions

- Questions sometimes too vague
 - e.g. answers on what is a duct differ
- Answers sometimes cannot be compared
 - Prices with VAT ?
 - Salaries are charged ?
 - Concrete reinforced or not ?
- Roads, ducts and foundations depends on precise soil studies
 - Which are not always available!
- Exchange rates and inflation can bias the comparison
- Specific costs need to be evaluated
 - Special landscaping, bridges, reinforcements
 - Extra cost due to the environment
- <u>Requires a uniform investigation</u>
 - Ask to a single company to study all sites on a given hemisphere
 → Call for Tender

Call for tender

Restricted to civil engineering

- roads, foundations, trenches, buildings,
- Note : Should we ask interfaces to the outside ????

Two separate options

- South sites
- North sites
- Suggest to restrict to the 2x3 high priority sites to speed-up the process

Request an intermediary milestones

- Identified difficulties
- A first estimate of each site costing

Ask detailed studies and justifications of the estimated costs from a simplified WBS

▶ Final uncertainties of 15-20%

First contacts with companies

Elan France (Bouygues affiliate, http://www.elan-france.com/)

- Interested
- Met on March 5th, 2013, now checking affiliates.

Arcadis – (http://www.arcadis-fr.com)

- Identified contact
- interested, are contacting international affiliates

Ingerop -(<u>http://www.ingerop.fr/</u>)

- Identified contact
- Confirm they will answer to the call
- Affiliates are identified for South
 - Ghisolfo in Chile for Chile and Argentina
 - Ingerop International Consultants in Johannesburg for Namibia
- Meeting on April 11th at the Ingerop headquarter.

• More companies could be contacted : Egis, Elite, Dumez & Borie

Phase 2 – Tentative schedule

- Preparation of the Call for tender data pack
 - STARTED, deadline < mid April</p>
- Check by the CEA contract Dpt + Issuing of the Call
 - End April

Company answer preparation

- +5 weeks, deadline June 3rd
- Analyse of the answers,
 - + 2 weeks mid-June
- Contract finalisation and signature
 - +2 week end of June
- Time to get the studies
 - ▶ +4 months (3+1 month for Summer) \leftarrow end of October

Conclusion

Phase 1

- General ideas for definition < summer 2012
- Compilation of telescope characteristics : fall 2012
- > Deep studies of power consumption management : fall 2012
- Telescope array finalisation (SCT) and infrastructure requirements finalised mid-January 2013
 - $\hfill\square$ Some details still to be fixed/studied
- Study released March 15th
 - > Infrastructure cost is ~38 M€ (~14 M€) in South (North resp.)

Phase 2

- Requires phase 1 completion
- Requires investigation / costing
 - Iocal infrastructures Started June 2012 to be finalised
 - Operation costs
 - specific risks
- Call for tender for infrastructure cost departure
 - Started early 2013 (Contact with companies)
 - > Final answer by end of October 2013
 - Beyond the present proposed schedule for site selection
 - Intermediate answer early September possible ?
 - Concentrate on Southern site as a first step ?

Backup

Th. Stolarczyk – SSC meeting – Heidelberg April. 5, 2013

Power consumption

