

Binary System

• Two Massive Stars...

Particle Acceleration in CWBs

Binary System

- Two Massive Stars...
- ... each with line-driven wind outflow

Particle Acceleration in CWBs

Binary System

- Two Massive Stars...
- ... each with line-driven wind outflow

Results

- Supersonic massive wind outflows
- $\bullet~$ Interaction \rightarrow wind-collision region

Particle Acceleration in CWBs

Binary System

- Two Massive Stars...
- ... each with line-driven wind outflow

Results

- Supersonic massive wind outflows
- \bullet Interaction \rightarrow wind-collision region

Particles

- Shock Acceleration
- Interaction with matter

 \rightarrow gamma rays

CWBs: Our Modelling Ingredients

- 1: MHD Solver
 - Line-driven winds
 - Stellar dipole fields
 - Free evolution

CWBs: Our Modelling Ingredients

- 1: MHD Solver
 - Line-driven winds
 - Stellar dipole fields
 - Free evolution
- 2: Energetic Particles
 - Injection at Shocks
 - Solution of Parker-transport equation

CWBs: Our Modelling Ingredients

- 1: MHD Solver
 - Line-driven winds
 - Stellar dipole fields
 - Free evolution
- 2: Energetic Particles
 - Injection at Shocks
 - Solution of Parker-transport equation

- 3: Non-Thermal Emission
 - Computation From Particle Spectra
 - Postprocessing

CTA 2021

Stellar Winds

• Example: Hydrodynamics

System of Equations

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

$$\frac{\partial \rho \mathbf{u}}{\partial t} + \nabla \cdot (\rho \mathbf{u} \mathbf{u} + p\mathbf{1}) = 0$$

$$\frac{\partial e}{\partial t} + \nabla \cdot ((e+p) \mathbf{u}) = 0$$

Stellar Winds

- Example: Hydrodynamics
- Radiative cooling

System of Equations

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

$$\frac{\partial \rho \mathbf{u}}{\partial t} + \nabla \cdot (\rho \mathbf{u} \mathbf{u} + p\mathbf{1}) = 0$$

$$\frac{\partial e}{\partial t} + \nabla \cdot ((e+p) \mathbf{u}) = S_e$$

Stellar Winds

- Example: Hydrodynamics
- Radiative cooling
- \bullet Force density ${\bf f}:$
 - Gravity of stars
 - Radiative Driving

System of Equations

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) &= 0 \\ \frac{\partial \rho \mathbf{u}}{\partial t} + \nabla \cdot (\rho \mathbf{u} \mathbf{u} + p \mathbf{1}) &= \mathbf{f} \\ \frac{\partial e}{\partial t} + \nabla \cdot ((e+p) \mathbf{u}) &= S_e + \mathbf{u} \cdot \mathbf{f} \end{aligned}$$

Force density

$$\mathbf{f} = \rho \sum_{i=1}^{n} \left(-GM_{\star,i} \frac{\mathbf{r}_{i}}{r_{i}^{3}} + \mathbf{g}_{rad,i}^{l} + \mathbf{g}_{rad,i}^{e} \right)$$

Stellar Winds

- Example: Hydrodynamics
- Radiative cooling
- Force density **f**:
 - Gravity of stars
 - Radiative Driving
- Radiative Driving:
 - Scattering off free electrons

System of Equations

$$\begin{aligned} &\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0 \\ &\frac{\partial \rho \mathbf{u}}{\partial t} + \nabla \cdot (\rho \mathbf{u} \mathbf{u} + p\mathbf{1}) = \mathbf{f} \\ &\frac{\partial e}{\partial t} + \nabla \cdot ((e+p) \mathbf{u}) = S_e + \mathbf{u} \cdot \mathbf{f} \end{aligned}$$

Effect of Electrons

$$\mathbf{g}_{rad,i}^{e} = \frac{\sigma_{e}L_{\star,i}}{4\pi r_{i}^{2}c} \mathbf{e}_{r_{i}}$$

Force density

$$\mathbf{f} = \rho \sum_{i=1}^{n} \left(-GM_{\star,i} \frac{\mathbf{r}_{i}}{r_{i}^{3}} + \mathbf{g}_{rad,i}^{l} + \mathbf{g}_{rad,i}^{e} \right)$$

Stellar Winds

- Example: Hydrodynamics
- Radiative cooling
- Force density f:
 - Gravity of stars
 - Radiative Driving
- Radiative Driving:
 - Scattering off free electrons
 - Line driving

System of Equations $\begin{aligned} &\frac{\partial\rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0 \\ &\frac{\partial\rho \mathbf{u}}{\partial t} + \nabla \cdot (\rho \mathbf{u}\mathbf{u} + p\mathbf{1}) = \mathbf{f} \\ &\frac{\partial e}{\partial t} + \nabla \cdot ((e+p)\mathbf{u}) = S_e + \mathbf{u} \cdot \mathbf{f} \end{aligned}$

Effect of Electrons $\mathbf{g}_{rad,i}^{e} = \frac{\sigma_{e}L_{\star,i}}{4\pi r_{i}^{2}c}\mathbf{e}_{r_{i}}$

Force density

$$\mathbf{f} = \rho \sum_{i=1}^{n} \left(-GM_{\star,i} \frac{\mathbf{r}_{i}}{r_{i}^{3}} + \mathbf{g}_{rad,i}^{l} + \mathbf{g}_{rad,i}^{e} \right)$$

Acceleration by Lines $\mathbf{g}_{rad,i}^{l} = \frac{\sigma_{e}}{c} \frac{L_{\star,i}}{4\pi r_{i}^{2}} k t^{-\alpha} I_{FD} \mathbf{e}_{r_{i}}$

Line Driving

- $\bullet~{\rm Contribution}~{\rm of}>10^4~{\rm lines}$
- $\bullet \ \ \mathsf{Wind} \ \mathsf{expansion} \ \to \ \mathsf{Doppler}$
- $\rightarrow \ \mathsf{Expensive}$

Line Driving

- ${\mbox{\circle*{-}}}$ Contribution of $>10^4$ lines
- $\bullet \ \ {\rm Wind} \ {\rm expansion} \ \to \ {\rm Doppler}$
- \rightarrow Expensive

Numerical Approximation

• Collective: power law

Resulting Acceleration $\mathbf{g}_{nod,i}^{l} = \frac{\sigma_{e}}{2} \frac{L_{\star,i}}{2} k t^{-\alpha} I_{E}$

$$\mathbf{g}_{rad,i}^{l} = \frac{\sigma_e}{c} \frac{L_{\star,i}}{4\pi r_i^2} k t^{-\alpha} I_{FD} \mathbf{e}_{r_i}$$

CTA 2021

- Contribution of $> 10^4$ lines
- $\bullet \ \ \mathsf{Wind} \ \mathsf{expansion} \ \to \ \mathsf{Doppler}$
- \rightarrow Expensive

Numerical Approximation

- Collective: power law
- Dependence on optical depth t

Resulting Acceleration $\mathbf{g}_{rad,i}^{l} = \frac{\sigma_{e}}{c} \frac{L_{\star,i}}{4\pi r_{i}^{2}} kt^{-\alpha} I_{FD} \mathbf{e}_{r_{i}}$

Optical Depth
$$t = \sigma_e \rho v_{th} \left| \frac{du}{dr} \right|^{-1}$$

universität

innsbruck

- Contribution of $> 10^4$ lines
- $\bullet \ {\sf Wind \ expansion} \ \to \ {\sf Doppler}$
- \rightarrow Expensive

Numerical Approximation

- Collective: power law
- Dependence on optical depth t
- \rightarrow Velocity gradient

 $\begin{array}{l} \mbox{Resulting Acceleration} \\ {\bf g}_{rad,i}^{l} = \frac{\sigma_{e}}{c} \frac{L_{\star,i}}{4\pi r_{i}^{2}} kt^{-\alpha} I_{FD} {\bf e}_{r_{i}} \end{array}$

Optical Depth
$$t = \sigma_e \rho v_{th} \left| \frac{du}{dr} \right|^{-1}$$

universität

innsbruck

- Contribution of $> 10^4$ lines
- $\bullet \ {\sf Wind \ expansion} \ \to \ {\sf Doppler}$
- \rightarrow Expensive

Numerical Approximation

- Collective: power law
- Dependence on optical depth t
- \rightarrow Velocity gradient

Resulting Acceleration $\mathbf{g}_{rad,i}^{l} = \frac{\sigma_{e}}{c} \frac{L_{\star,i}}{4\pi r_{i}^{2}} k t^{-\alpha} I_{FD} \mathbf{e}_{r_{i}}$

Optical Depth
$$t = \sigma_e \rho v_{th} \left| \frac{du}{dr} \right|^{-1}$$

universität

innsbruck

Wind Acceleration & Magnetic Field

Line Driven Winds

- Very rapid acceleration
- Acceleration rate ↔ velocity gradient

Wind Acceleration & Magnetic Field

Line Driven Winds

- Very rapid acceleration
- Acceleration rate ↔ velocity gradient

Wind Acceleration & Magnetic Field

Situation in WR 11

• Collision before v_{∞} is reached

Situation in WR 11

- Collision before v_∞ is reached
- Coupling of winds to stellar radiation? (k & α)

- Collision before v_{∞} is reached
- Coupling of winds to stellar radiation? ($k \& \alpha$)

- Collision before v_{∞} is reached
- Coupling of winds to stellar radiation? (k & α)

Situation in WR 11

- Collision before v_{∞} is reached
- Coupling of winds to stellar radiation? ($k \& \alpha$)

Effects

- Radiative breaking
- Shadowing

Wind Properties in WR 11

Transport Equation

$$\frac{\partial j}{\partial t} - D(E)\nabla^2 j + \nabla \cdot (\mathbf{u}j) - \frac{\partial}{\partial E} \left(\left(\frac{E}{3} \nabla \cdot \mathbf{u} + \dot{E}_{\mathsf{loss}} \right) j \right) = Q_0 \delta(E - E_0)$$

Transport Equation

$$\frac{\partial j}{\partial t} - D(E)\nabla^2 j + \nabla \cdot (\mathbf{u}j) - \frac{\partial}{\partial E} \left(\left(\frac{E}{3} \nabla \cdot \mathbf{u} + \dot{E}_{\mathsf{loss}} \right) j \right) = Q_0 \delta(E - E_0)$$

- Injection at shock fronts
- Advection with fluid flow
- Spatial diffusion
- Energy losses

Transport Equation

$$\frac{\partial j}{\partial t} - D(E)\nabla^2 j + \nabla \cdot (\mathbf{u}j) - \frac{\partial}{\partial E} \left(\left(\frac{E}{3} \nabla \cdot \mathbf{u} + \dot{E}_{\mathsf{loss}} \right) j \right) = Q_0 \delta(E - E_0)$$

- Injection at shock fronts
- Advection with fluid flow
- Spatial diffusion
- Energy losses

Transport Equation

$$\frac{\partial j}{\partial t} - \underline{D}(\underline{E})\nabla^2 j + \nabla \cdot (\mathbf{u}j) - \frac{\partial}{\partial E} \left(\left(\frac{E}{3} \nabla \cdot \mathbf{u} + \dot{E}_{\mathsf{loss}} \right) j \right) = Q_0 \delta(E - E_0)$$

- Injection at shock fronts
- Advection with fluid flow
- Spatial diffusion
- Energy losses

Transport Equation

$$\frac{\partial j}{\partial t} - D(E)\nabla^2 j + \nabla \cdot (\mathbf{u}j) - \frac{\partial}{\partial E} \left(\left(\frac{E}{3} \nabla \cdot \mathbf{u} + \frac{\dot{E}_{\mathsf{loss}}}{J} \right) j \right) = Q_0 \delta(E - E_0)$$

- Injection at shock fronts
- Advection with fluid flow
- Spatial diffusion
- Energy losses

Transport Equation $\frac{\partial j}{\partial t} - D(E)\nabla^2 j + \nabla \cdot (\mathbf{u}j) - \frac{\partial}{\partial E} \left(\left(\frac{E}{3} \nabla \cdot \mathbf{u} + \dot{E}_{\mathsf{loss}} \right) j \right) = Q_0 \delta(E - E_0)$

Energy loss processes

- Synchrotron (Electrons)
- Inverse Compton (Electrons)
- Thermal bremsstrahlung (Electrons)
- Coulomb losses
- Nucleon-nucleon interaction

- Injection at shock fronts
- Advection with fluid flow
- Spatial diffusion
- Energy losses

Transport Equation

$$\frac{\partial j}{\partial t} - D(E)\nabla^2 j + \nabla \cdot (\mathbf{u}j) - \frac{\partial}{\partial E} \left(\left(\frac{E}{3} \nabla \cdot \mathbf{u} + \dot{E}_{\mathsf{loss}} \right) j \right) = Q_0 \delta(E - E_0)$$

Implementation

- Electrons & Protons
- \rightarrow Advected scalar fields
- \rightarrow Semi-Lagrangian solver

- Injection at shock fronts
- Advection with fluid flow
- Spatial diffusion
- Energy losses

Transport Equation $\frac{\partial j}{\partial t} - D(E)\nabla^2 j + \nabla \cdot (\mathbf{u}j) - \frac{\partial}{\partial E} \left(\left(\frac{E}{3} \nabla \cdot \mathbf{u} + \dot{E}_{\text{loss}} \right) j \right) = Q_0 \delta(E - E_0)$

Implementation

- Electrons & Protons
- \rightarrow Advected scalar fields
- \rightarrow Semi-Lagrangian solver

- Injection at shock fronts
- Advection with fluid flow
- Spatial diffusion
- Energy losses

Transport Equation $\frac{\partial j}{\partial t} - D(E)\nabla^2 j + \nabla \cdot (\mathbf{u}j) - \frac{\partial}{\partial E} \left(\left(\frac{E}{3} \nabla \cdot \mathbf{u} + \dot{E}_{\text{loss}} \right) j \right) = Q_0 \delta(E - E_0)$

Implementation

- Electrons & Protons
- \rightarrow Advected scalar fields
- ightarrow Semi-Lagrangian solver

Results

- Position-dependent particle flux
- \rightarrow Can compute non-thermal emission

- Injection at shock fronts
- Advection with fluid flow
- Spatial diffusion
- Energy losses

The Role of Spatial Diffusion

Particle Spectra

Energy-Loss and Acceleration Rates

CTA 2021

Resulting Particle Distribution

Maximum Particle Energies

Resulting Particle Distribution

Maximum Particle Energies

Magnetic Field & Synchrotron Losses

CTA 2021

Particle Acceleration

Properties of WR 11

- Electrons Suppressed:
 - High radiation fields
 - Strong magnetic field

Properties of WR 11

- Electrons Suppressed:
 - High radiation fields
 - Strong magnetic field
- Dominant Process:

$$\rightarrow p + p \rightarrow p + p + \pi^{0} \rightarrow \pi^{0} \rightarrow \gamma + \gamma$$

Properties of WR 11

- Electrons Suppressed:
 - High radiation fields
 - Strong magnetic field
- Dominant Process:

$$\rightarrow p + p \rightarrow p + p + \pi^{0}$$
$$\rightarrow \pi^{0} \rightarrow \gamma + \gamma$$

Projection of Radiation

Properties of WR 11

- Electrons Suppressed:
 - High radiation fields
 - Strong magnetic field
- Dominant Process:

$$\begin{array}{l} \rightarrow \quad p + p \rightarrow p + p + \pi^{0} \\ \rightarrow \quad \pi^{0} \rightarrow \gamma + \gamma \end{array}$$

Projection of Radiation

Integrated Particle Spectra

Conclusion

- WR 11: hadron accelerator
- Fit to data possible
- Max flux at apastron
- Min flux at periastron

- Other Systems
- New application: gamma-ray binaries